Amazon River Cycles Carbon Faster than Thought

Jul 27, 2005

The rivers of South America's Amazon basin are "breathing" far harder - and cycling the greenhouse gas carbon dioxide far faster - than anyone realized. Most of the carbon being exhaled as carbon dioxide from Amazonian rivers and wetlands has spent a mere five years sequestered in the trees, plants and soils of the surrounding landscape, researchers report in the July 28 issue of the journal Nature.

Because this time scale is so much shorter than researchers had thought, says James Morris, program director in the National Science Foundation (NSF)'s division of environmental biology, "this work adds important information to the global carbon cycle puzzle."

Morris' division funded the research in conjunction with the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory, the National Aeronautics and Space Administration (NASA) and the Research Support Foundation for the State of San Paulo (FAPESP), Brazil.

Until now, explains Emilio Mayorga, University of Washington (UW) oceanographer and lead author of the Nature piece, researchers had hoped that regions such as the nearly 2.4 million-square-mile Amazon River basin, where tropical forests rapidly gulp carbon dioxide during photosynthesis, were holding onto that carbon for decades or centuries.

Indeed, says his co-author, Anthony Aufdenkampe of the Stroud Water Research Center in Pennsylvania, "those who've previously made measurements assumed that the return of this carbon to the atmosphere must be a slow process that offered at least temporary respite from greenhouse effects."

But the data told a different story, Aufdenkampe says: "As part of the largest radiocarbon age survey ever for a single watershed, we show that the enormous amount of carbon dioxide silently being returned to the atmosphere is far 'younger' than carbon being carried downstream."

"'River breath' is clearly happening much faster than anyone realized," says Jeff Richey, an oceanographer at UW and another co-author of the paper.

Carbon is carried by rains and groundwater into waterways from soils, decomposing woody debris, leaf litter and other organic matter. Once in waterways it is chewed up by microorganisms, insects and fish. The carbon dioxide they generate quickly returns to the atmosphere an amount equal to what is absorbed each year by the Amazonian rainforest.

"Land use patterns, vegetation distribution and other parameters in the region are all changing as a result of human activities, and the system is responding fairly quickly," Mayorga says. "Both human and natural systems, in turn, will be impacted."

Other co-authors of the paper are Paul Quay and the late John Hedges, both UW oceanographers; Caroline Masiello of Rice University; Alex Krusche of the University of São Paulo, Brazil; and Thomas Brown of the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.

Source: The National Science Foundation

Explore further: Testing immune cells on the International Space Station

add to favorites email to friend print save as pdf

Related Stories

Biologists help solve fungi mysteries

8 hours ago

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Scientists see urgent need for reducing emissions

Apr 15, 2014

(Phys.org) —The bad news: a major transformation of our current energy supply system is needed in order to avoid a dangerous increase in global temperatures. The good news: the technologies needed to get ...

Warm US West, cold East: A 4,000-year pattern

Apr 16, 2014

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Recommended for you

Testing immune cells on the International Space Station

11 hours ago

The human body is fine-tuned to Earth's gravity. A team headed by Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy is now conducting an experiment on the International Space Station ...

Easter morning delivery for space station

16 hours ago

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Apr 19, 2014

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

User comments : 0

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.