Superconductivity in diamond

Apr 10, 2004
diamond

As well as holding pride of place as the most sought-after of all precious gemstones, diamond possesses a dazzling array of technologically useful properties. As well as being the hardest, most thermally conducting, and chemically resistant of all known materials it is also biocompatible, highly transparent and of great interest for use in the electronics industry. And now, to top it all off, Evgeni Ekimov and colleagues report in Nature, that under the correct conditions, it can also become a superconductor.

The diamonds they used were grown by the conventional industrial technique of subjecting graphite to high pressure and temperature, but to make it electrically conducting they added 2.8% of boron during growth, which contributes positive charge carriers (holes) to the material.

Authors report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature Tc 4 K; superconductivity survives in a magnetic field up to Hc2(0) 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

Explore further: Mapping the optimal route between two quantum states

add to favorites email to friend print save as pdf

Related Stories

Microsoft unveils Xbox in China as it faces probe

9 hours ago

Microsoft on Wednesday unveiled its Xbox game console in China, the first to enter the market after an official ban 14 years ago, even as it faces a Chinese government probe over business practices.

Recommended for you

Refocusing research into high-temperature superconductors

4 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

10 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

10 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0