Metals take a walk

Jul 12, 2005

Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes 'walking' a path to their destinations

Do metal complexes casually stroll around certain molecules prior to chemical reactions? Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes "walking" a path to their destinations.

Many types of chemical reactions and new materials depend on the integration of metals with organic (carbon based) molecules. Metals, for instance, assist in transformations of chemical compounds, while materials with many kinds of unique properties often incorporate metals into the molecular structure.

The phenomenon dubbed "ring walking," for the idea that these metal complexes might move from point to point around organic molecules (which contain the familiar, six-sided carbon rings), had been deduced from experimentation. But proving that ring walking takes place prior to a chemical transformation had not been successfully attempted before.

Dr. Milko van der Boom thought that understanding the route the metal takes as it moves from one place to another on the molecule might give chemists a powerful tool for understanding and controlling chemical reactions. Olena Zenkina, a student who came from Ukraine for a summer research program and ended up staying to pursue a Ph.D. in Dr. van der Boom's group, used Nuclear Magnetic Resonance (NMR) to track the movements of the platinum complexes.

They were able to determine how these complexes moved in several steps around the structure of fairly simple organic molecules by undergoing weak molecular interactions at certain junctures. The walking stopped upon arrival at the point on the organic molecule where the chemical reaction occurs. The results of their experiment were confirmed in a computer simulation carried out by the group of Prof. Gershom (Jan) Martin, also of the Organic Chemistry Department. Van der Boom and Zenkina are now conducting research into various aspects of ring-walking.

They want to know, for instance, how fast, and how far metals can walk. In addition, they have taken the first steps toward controlling the direction a metal takes in its walk around the molecule. In contrast to today's approach to chemical transformations, which often involves custom designing sophisticated molecules, learning to direct the routes of metal complexes on the way to chemical reactions might provide a simple and effective alternative.

Dr. Milko van der Boom's research is supported by the Henri Gutwirth Fund for Research ; ITEK, Israel; the Helen and Martin Kimmel Center for Molecular Design; and Sir Harry A.S. Djanogly, CBE, UK. Dr. Van Der Boom is the incumbent of the Dewey D. Stone and Harry Levine Career Development Chair.

Source: American Committee for the Weizmann Institute of Science

Explore further: Breakthrough in nonlinear optics research

add to favorites email to friend print save as pdf

Related Stories

Superatomic nickel core and unusual molecular reactivity

Feb 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems that contain superatoms open a number of possibilities ...

Renewable energy obtained from wastewater

Feb 24, 2015

Researchers from the Universitat Autònoma de Barcelona have devised an efficient way to obtain electrical energy and hydrogen by using a wastewater treatment process. The proposed system, published in Water Research, uses b ...

Micro-5: Gut reactions in space

Feb 24, 2015

Our guts literally teem with beneficial bacteria. But not all bacteria are harmless. Disease-causing bacteria, known as pathogens, can infect our intestines, causing illness or even death. Bacterial pathogens ...

Bacteria connect to each other and exchange nutrients

Feb 23, 2015

It is well-known that bacteria can support each others' growth and exchange nutrients. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and their colleagues at the universities ...

Recommended for you

Studying effects of target 'tents' on NIF

28 minutes ago

A systematic study of the effects on National Ignition Facility (NIF) implosions of the ultra-thin mounting membranes that support target capsules inside NIF hohlraums was reported by LLNL researchers in ...

Mathematicians model fluids at the mesoscale

34 minutes ago

When it comes to boiling water—or the phenomenon of applying heat to a liquid until it transitions to a gas—is there anything left for today's scientists to study? The surprising answer is, yes, quite ...

Breakthrough in nonlinear optics research

23 hours ago

A method to selectively enhance or inhibit optical nonlinearities in a chip-scale device has been developed by scientists, led by the University of Sydney. The researchers from the Centre for Ultrahigh bandwidth ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.