Venus Express Completes Integration And Test Phases

Jul 08, 2005

Venus Express, the first European space probe to investigate the planet Venus has completed the development, integration and test phase in Toulouse.

Venus Express is being manufactured by EADS Astrium as prime contractor for ESA (European Space Agency). The research probe is scheduled for launch on board a Soyuz-Fregat rocket from the Baikonur Cosmodrome (Kazakhstan) in late October 2005. EADS is the principal shareholder of Starsem, the launch provider, with 35%, Arianespace holding 15%.

For two Venusian years (500 Earth days), the probe will investigate the atmosphere of the hottest planet in terms of structure, composition and dynamics.

Venus Express, carrying seven scientific instruments (spectrometers, imagers and a plasma analyser) will orbit the second planet of the solar system at an altitude between 250 and 66,000 kilometres by flying above its poles.

Analysing and understanding the prevailing conditions in the atmosphere and in the near environment of Venus is of critical importance to understanding long term climatic processes governing the evolution of life on Earth.

By re-using both Mars Express spacecraft design and the available instruments from the Mars Express and Rosetta programs, Venus Express meets the triple challenge of achieving its scientific objectives, cost efficiency and its unparalleled development schedule.

Venus Express development began in the autumn of 2002. In the last few months the spacecraft has successfully passed its entire environmental test campaign in Intespace Toulouse and is currently undergoing the final functional test prior to Flight Acceptance Review in early July. Departure to Baikonour is planned by August this year.

Specific solar panels for the mission

As the Venus mission requires guiding the spacecraft towards the sun the layout of the solar generators has to be very special. The design is necessary for the solar arrays to withstand the high temperature loads encountered during its mission.

After Mercury, Venus is the Sun's nearest planet and consequently solar radiation is considerably higher than on Earth. Additionally, the solar arrays will be exposed to the sunlight reflection from the Venusian atmosphere, the so-called albedo.

The solar arrays have been designed and qualified for operating temperatures between -167°C and +158°C.

It delivers a power of 821 watts in the Earth's orbit and 1,468 watts in the Venusian orbit at the end of its four-year mission. Shortly after launch, Venus Express will unfold its solar arrays which will remain deployed during the whole mission.

Copyright 2005 by Space Daily, Distributed by United Press International

Explore further: Lockheed Martin successfully mates NOAA GOES-R satellite modules

add to favorites email to friend print save as pdf

Related Stories

Venus Express rises again

Jul 14, 2014

(Phys.org) —After a month surfing in and out of the atmosphere of Venus down to just 130 km from the planet's surface, ESA's Venus Express is about to embark on a 15 day climb up to the lofty heights of ...

Views of Venus day and night side

May 19, 2014

This sequence of images was taken by the Ultraviolet/Visible/Near-Infrared spectrometer (VIRTIS) on board ESA's Venus Express spacecraft between 12 and 19 April 2006, during the first orbit (capture orbit) ...

Recommended for you

Internet moguls Musk, Bezos shake up US space race

8 hours ago

The space race to end America's reliance on Russia escalated this week with a multibillion dollar NASA award for SpaceX's Elon Musk and an unexpected joint venture for Blue Origin's Jeff Bezos.

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

User comments : 0