Probable observation of a supersolid helium phase

Apr 21, 2004
Supersolid_phase

Just last year we have seen a Nobel Prize in physics awarded to Abrikosov, Ginzburg and Leggett for "pioneering contributions to the theory of superconductors and superfluids"
And now Nature publishes an article by E. Kim and M. Chan (vol 427, p. 225) who claim to observe a 'supersolid' He phase.

A supersolid is a spacially ordered superfluid. When quantum fluids, like 4He are cooled below a certain characteristic temperature, they undergo the superfluid transition and enter a state of 0 viscosity. It has been theorised that quantum fluids can undergo a similar transition from the solid phase.

Although it is intuitive to associate superflow only with the liquid phase, it has been proposed theoretically that superflow can also occur in the solid phase of He. Owing to quantum mechanical fluctuations, delocalized vacancies and defects are expected to be present in crystalline solid He, even in the limit of zero temperature. These zero-point vacancies can in principle allow the appearance of superfluidity in the solid. However, in spite of many attempts, such a ‘supersolid’ phase has yet to be observed
in bulk solid He.

Chan and graduate student Eun-Seong Kim made this discovery by using an apparatus that allowed them to compress helium-4 gas into a sponge-like glass disk with miniature atomic-scale pores while cooling it to almost absolute zero (below 2.176 K). The porous glass was inside a leak-tight capsule, and the helium gas became a solid when the pressure inside the capsule reached 40 times the normal atmospheric pressure. Chan and Kim continued to increase the pressure to 62 atmospheres. They also rotated the experimental capsule back and forth, monitoring the capsule's rate of oscillation while cooling it to the lowest temperature.

Something very unusual occurred when the temperature dropped to one-tenth of a degree above absolute zero. The oscillation rate suddenly became slightly more rapid, as if some of the helium had disappeared. However, Chan and Kim were able to confirm that the helium atoms had not leaked out of the experimental capsule because its rate of oscillation returned to normal after they warmed the capsule above one-tenth of a degree above absolute zero. So they concluded that the solid helium-4 probably had acquired the properties of a superfluid when the conditions were more extreme.

If the experiment is replicated, it would confirm that all three states of matter can enter into the “super” state, known as a Bose-Einstein condensation. The existence of a superfluid and a “supervapor” had previously been proven, but theorists had continued to debate about whether a supersolid was even possible.

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Journalist linked to Anonymous gets five years' prison

10 hours ago

A journalist also known as an informal spokesman for the hacker group Anonymous was sentenced to five years in prison Thursday in a case which rallied activists for press freedom, his supporters said.

Drought sees Rio's main hydro plant turned off

10 hours ago

A major Rio hydroelectric power plant was switched off after water levels slipped below an operational minimum following severe drought, Brazil's national grid told AFP on Thursday.

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.