Extra-large 'atoms' allow Penn physicists to solve the riddle of why things melt

Jun 30, 2005

Physicists at the University of Pennsylvania have experimentally discovered a fundamental principal about how solid materials melt. Their studies have shown explicitly that melting begins at defects within the crystalline structure of solid matter, beginning along the cracks, grain boundaries and dislocations that are present in the otherwise orderly array of atoms. Their findings, which will appear today in the journal Science, answer longstanding fundamental questions about melting and will likely influence research in physics, chemistry, materials science and engineering, as well as studies of biological importance.

"Melting is one of the most fundamental phenomena in physics and is one of the phase transitions most frequently seen in daily life," said Arjun Yodh, a professor in Penn's Department of Astronomy and Physics. "Yet major details about the mechanisms that drive the melting of an ice cube are missing. Superficially, the principle is straightforward. As a solid heats up, molecules within the ice acquire more energy and jiggle around more, driving the transition from a solid to a liquid. This is true in part, but reality is richer and more complex."

In the Science paper, the Penn physicists show direct evidence for a leading theory of melting, the notion that the start of melting – premelting – occurs at imperfections in the orderly structure of solid crystals. Premelting occurs in areas where the alignment of atoms is not perfect, especially at the boundaries within crystals where the patterns of atoms shift much like imperfections in the grain of a piece of wood.

One problem with proving theories of how things melt is size; one simply cannot see the atoms in a solid structure as it melts. Not only are the atoms very small, but the solid matter tends to obscure what goes on inside. To get around these problems, Yodh and his Penn colleagues made atoms bigger.

"We created translucent three-dimensional crystals from thermally-responsive colloidal spheres. The spheres are like small beads visible in an optical microscope," said Ahmed Alsayed, a doctoral student in the Department of Astronomy and Physics and lead author of the study. "The spheres swell or collapse significantly with small changes in temperature, and they exhibit other useful properties that allow them to behave like enormous versions of atoms for the purpose of our experiment."

As they raised the temperature of the colloidal particle crystal, the researchers could record changes within the crystal by following the motions of many individual spheres using a microscope and a video recorder.

"When we raised the temperature, we could track the vibrational movement of the spheres," Alsayed said. "Premelting was first revealed as an increased movement along the lines of defects in the crystal. These motions then spread into the more ordered parts of the crystal. We could see that the amount of premelting depended on the type of crystal defect and on the distance from the defect."

The researchers believe these observations will lead to a better understanding of the melting process and enable more quantitative predictions of just how a substance might melt.

"The existence of premelting inside solid materials implies that liquids exist within crystals before their melting temperature is reached," Yodh said. "Understanding this effect will provide insight for the design of strong materials that are more or less impervious to temperature changes and could also apply to our theories of how natural materials, such as water, evolve in our environment."

Other Penn researchers involved in this study are Mohammad Islam, Jian Zhang, and Peter Collings, who is also a professor of physics at Swarthmore College.

Source: University of Pennsylvania

Explore further: Generating broadband terahertz radiation from a microplasma in air

Related Stories

Mixing up a batch of stronger metals

Apr 14, 2015

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength ...

How iron feels the heat

Feb 13, 2015

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ...

A new way of making glass

Nov 09, 2012

(Phys.org)—A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are ...

Glass for battery electrodes

Jan 13, 2015

Today's lithium-ion batteries are good, but not good enough if our future energy system is to rely on electrical power. Chemists and materials scientists at ETH Zurich have developed a type of glass that ...

Shedding light on why blue LEDs are so tricky to make

Jan 07, 2015

Scientists at University College London, in collaboration with groups at the University of Bath and the Daresbury Laboratory, have uncovered the mystery of why blue light-emitting diodes (LEDs) are so difficult to make, by ...

Recommended for you

Researchers build real-time tunable plasmon laser

Apr 24, 2015

(Phys.org)—A combined team of researchers from Northwestern and Duke Universities has succeeded in building a plasmon laser that is tunable in real-time. In their paper published in the journal Nature Co ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.