Philips demonstrates feasibility of a new imaging technique based on magnetic particles

Jun 30, 2005

Scientists at Philips Research have been active in developing a completely new imaging technique called Magnetic Particle Imaging (MPI) and have demonstrated the feasibility of the technique. Although still in the early research stages, the new technique offers potential as a valuable addition to the current armory of imaging techniques for medical imaging and materials analysis. Results of the work have been published in the June 30 edition of Nature.

The idea behind MPI is to produce spatial images by measuring the magnetic fields generated by magnetic particles in a tracer. While previous approaches to realize this resulted in relatively poor spatial resolution or low sensitivity, the method invented by Philips generates high-resolution images at low dosages. This is achieved by combining the nonlinear magnetization curve of the small magnetic particles with an inhomogeneous magnetic field.

The particles are subjected to a time-varying sinusoidal magnetic field with sufficiently high amplitude to drive their magnetization into the non-linear region. This induces high-frequency harmonics in the resulting time-varying magnetization that can be easily extracted from the fundamental or drive frequency by filtering. If the magnetic particles are simultaneously exposed to a time-constant magnetic field of sufficiently large magnitude, the particle magnetization becomes saturated and the generation of harmonics is suppressed. This opens the possibility of producing an imaging device in which the time-constant field is constructed such that the magnitude of the field drops to zero at a single point in the field known as the 'field-free point' and increases in magnitude towards the edges. A signal containing harmonics will then be detected only from magnetic particles located in the vicinity of the field-free point; at all other points the magnetic particles are fully saturated by the time-constant field and produce no signal. So by scanning the field-free point through the volume of interest, it is possible to develop a 3D image of the magnetic-particle distribution. Movement of the field-free point can be achieved either mechanically or by field-induced movement. Both techniques have been investigated by the Philips researchers.

The researchers have evaluated the new MPI technique using commercially-available magnetic tracers. Conducted on 'phantom' objects, these investigations have demonstrated the feasibility of MPI and show that it has potential to be developed into an imaging method characterized by both high spatial resolution and high sensitivity. The expected high sensitivity leads to the presumption that the technique could become a valuable addition to other medical imaging modalities.

Besides its potential in medical imaging, MPI also shows promise as an imaging technique for materials research - specifically in the investigation of cracks and cavities in insulating materials like polymers or ceramics.

Source: Philips

Explore further: Google searches for 'n-word' associated with black mortality

Related Stories

The appeal of being anti-GMO

51 minutes ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

1 hour ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Image: Sentinel-1A satellite images Florida

1 hour ago

The peninsula sits between the Gulf of Mexico to the west, and the Atlantic Ocean to the east. The large body of water at the top of the image is the freshwater Lake Okeechobee. Covering about 1900 sq km, ...

Silicon Valley marks 50 years of Moore's Law

22 minutes ago

Computers were the size of refrigerators when an engineer named Gordon Moore laid the foundations of Silicon Valley with a vision that became known as "Moore's Law."

Recommended for you

Bizarre 'platypus' dinosaur discovered

46 minutes ago

Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants.

Is the universe a hologram?

1 hour ago

Describing the universe requires fewer dimensions than we might think. New calculations show that this may not just be a mathematical trick, but a fundamental feature of space itself.

Why be creative on social media?

3 hours ago

There are five motivators for creating novel content online, whether blog posts, shared news stories, images, photos, songs, videos or any of the other digital artifacts users of social media and social networking sites share ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.