Era of Next-generation Electronics Draws Closer with the Discovery of Spintronics

Jun 29, 2005

Spintronics – the pioneering new technology, wherein both the charge and spin of an electron is used to carry information – is generating great excitement in the world of technology for its immense potential in a wide variety of applications.

“The first applications of spintronics having been demonstrated, there is tremendous interest in the development of the next spintronics device coupled with the hope that it could foster a new revolution,” remarks Frost & Sullivan Research Analyst Sivakumar Muthuramalingam.

Spintronics truly gained traction with the discovery of giant magnetoresistance (GMR) in the 1980s. One of the earliest spin phenomena studied extensively, GMR leads the way toward the commercialization of spintronics with GMR sensors holding a bulk of the market share in commercial hard disk drives.

Perhaps spintronics’ biggest potential lies in embedded memories. Nonvolatile memory devices such as magnetoresistive random access memory (MRAM) will revolutionize the memory market and contribute to the development of sophisticated and versatile computing and personal devices. Promising to introduce innovations such as instantly bootable computers, MRAM looks poised for resounding success.

MRAM already attracts considerable funding from organizations such as the U.S. Defense Advanced Research Projects Agency (DARPA) that enables private industry to conduct research into MRAM’s substantial potential.

However, spintronics research is still in its early stages and faces several challenges, most notably handling-related issues. Since spintronic devices use magnetism and employ materials such as nickel, iron, cobalt, and their alloys not commonly used in normal semiconductor electronics, there are difficulties in etching and patterning as well as in integrating the magnetic material into a silicon process for manufacturing MRAMs.

“The behavior of the magnetic element on a chip in both read and write modes could be quite a hurdle,” says Muthuramalingam. “Researchers have to discover, fix and understand them to make MRAMs reliable.”

Nevertheless, there is no doubt that the future possibilities for spintronics are many and varied. Already, almost 95% of all hard disks manufactured today are fitted with GMR heads. Industry interest in spintronics is rapidly increasing and many spin-based devices will hit the market in the next three to five years, with MRAM expected as early as 2006.

“Other prospective and exciting applications include the use of spintronics in quantum computation and the possible development of the first ever quantum computer,” notes Muthuramalingam. “Revolutionary spin transistors are also on the cards and could well challenge the monopoly of semiconductor electronics.”

If you are interested in an analysis, which provides manufacturers, end users, and other industry participants an overview, summary, challenges, and latest coverage of Spintronics – An Emerging Technology Analysis – then send an e-mail to Trisha Bradley, Corporate Communications, at trisha.bradley@frost.com, with the following information: full name, company name, title, contact telephone number, fax number, and e-mail address. Upon receipt of the above information, an overview will be e-mailed to you.

Source: Frost & Sullivan

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Research reveals vital insight into spintronics

Jul 03, 2011

(PhysOrg.com) -- Progress in electronics has relied heavily on reducing the size of the transistor to create small, powerful computers. Now spintronics, hailed as the successor to the transistor, looks set ...

IBM, Stanford Collaborate on World-Class Spintronics Research

Apr 28, 2004

SAN JOSE, Calif. -- April 26, 2004 -- IBM and Stanford University are joining forces on the advanced research and creation of new high-performance, low-power electronics in the emerging field of nanotechnology called "spintronics." ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.