Scientist refines cosmic clock to determine age of Milky Way

Jun 29, 2005

The University of Chicago's Nicolas Dauphas has developed a new way to calculate the age of the Milky Way that is free of the unvalidated assumptions that have plagued previous methods. Dauphas' method, which he reports in the June 29 issue of the journal Nature, can now be used to tackle other mysteries of the cosmos that have remained unsolved for decades.

"Age determinations are crucial to a fundamental understanding of the universe," said Thomas Rauscher, an assistant professor of physics and astronomy at the University of Basel in Switzerland. "The wide range of implications is what makes Nicolas' work so exciting and important."

Dauphas, an Assistant Professor in Geophysical Sciences, operates the Origins Laboratory at the University of Chicago. His wide-ranging interests include the origins of Earth's atmosphere, the oldest rocks that may contain evidence for life on Earth and what meteorites reveal about the formation of the solar system.

In his latest work, Dauphas has honed the accuracy of the cosmic clock by comparing the decay of two long-lived radioactive elements, uranium-238 and thorium-232. According to Dauphas' new method, the age of the Milky Way is approximately 14.5 billion years, plus or minus more than 2 billion years.

That age generally agrees with the estimate of 12.2 billion years-nearly as old as the universe itself-as determined by previously existing methods. Dauphas' finding verifies what was already suspected, despite the drawbacks of existing methods: "After the big bang, it did not take much time for large structures to form, including our Milky Way galaxy," he said.

The age of 12 billion years for the galaxy relied on the characteristics of two different sets of stars, globular clusters and white dwarfs. But this estimate depends on assumptions about stellar evolution and nuclear physics that scientists have yet to substantiate to their complete satisfaction.

Globular clusters are clusters of stars that exist on the outskirts of a galaxy. The processes of stellar evolution suggested that most of the stars in globular clusters are nearly as old as the galaxy itself. When the big bang occurred 13.7 billion years ago, the only elements in the universe were hydrogen, helium and a small quantity of lithium. The Milky Way's globular clusters have to be nearly that old because they contain mostly hydrogen and helium. Younger stars contain heavier elements that were recycled from the remains of older stars, which initially forged these heavier elements in their cores via nuclear fusion.

White dwarf stars, meanwhile, are stars that have used up their fuel and have advanced to the last stage of their lives. "The white dwarf has no source of energy, so it just cools down. If you look at its temperature and you know how fast it cools, then you can approximate the age of the galaxy, because some of these white dwarfs are about as old as the galaxy," Dauphas said.

A more direct way to calculate the age of stars and the Milky Way depends on the accuracy of the uranium/thorium clock. Scientists can telescopically detect the optical "fingerprints" of the chemical elements. Using this capability, they have measured the uranium/thorium ratio in a single old star that resides in the halo of the Milky Way.

They already knew how fast uranium and thorium decay with time. If they also know the ratio of uranium and thorium when the star was formed-the production ratio-then calculating the star's age becomes a problem with a straightforward solution. Unfortunately, "this production ratio is very poorly known," Dauphas said.

Dauphas solved the problem by combining the data from the uranium/thorium observations in the halo star with measurements of the uranium/thorium ratio that other scientists had made in meteorites. "If you measure a meteorite, you ultimately have the composition of the material that formed the sun 4.5 billion years ago," he said. And this material included debris from many generations of other stars, now long dead, that still contains information about their own uranium/thorium composition.

"We have very good instruments in the laboratory that allow us to measure this ratio with very, very good precision," Dauphas said.

Following the change in amount of two sufficiently long-lived radioactive elements is a sensitive way of measuring the time since they were formed, Rauscher said. "The problem is to set the timer correctly, to know the initial amounts of uranium and thorium. By clever combination of abundances in stars and meteorites, Nicolas provides the important starting value for the uranium/thorium clock," he said.

Scientists can now use that clock to determine the age of a variety of interstellar objects and particles, including cosmic rays, Rauscher said. These subatomic scraps of matter continually bombard the Earth from all directions. Where they come from has baffled scientists for almost a century.

Dauphas' work may also lead to a better understanding of how stars produce gold, uranium and other heavy elements that play an important role in everyday life, Rauscher said.

Source: University of Chicago

Explore further: Why seashells' mineral forms differently in seawater

add to favorites email to friend print save as pdf

Related Stories

Galactic dinosaurs not extinct

Feb 27, 2015

One of the biggest mysteries in galaxy evolution is the fate of the compact massive galaxies that roamed the early Universe.

Monster black hole discovered at cosmic dawn

Feb 25, 2015

Scientists have discovered the brightest quasar in the early universe, powered by the most massive black hole yet known at that time. The international team led by astronomers from Peking University in China ...

Planets can alter each other's climates over eons

Feb 20, 2015

A new study sheds light on how exoplanets in tightly-packed solar systems interact with each other gravitationally by affecting one another's climates and their abilities to support alien life.

What's important to know about planet Mercury?

Feb 20, 2015

Close by the Sun is Mercury, a practically atmosphere-like world that has a lot of craters. Until NASA's MESSENGER spacecraft arrived there in 2008, we knew very little about the planet—only part of it ...

Telescopes give shape to furious black hole winds

Feb 19, 2015

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA's (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions—a ...

Recommended for you

Unified theory for skyrmion-materials

9 hours ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Scientists provide new data on the nature of dark matter

10 hours ago

Recent research conducted by scientists from the University of Granada sheds light on the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational ...

Why seashells' mineral forms differently in seawater

13 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.