The Unusual Origin of Peacock Brown

Jun 28, 2005

Many animals' colors originate from photonic crystals, which reflect specific colors of light as a result of their nanoscopic structures, rather than from pigments, which derive their colors from their chemical composition. The brown in peacocks' tails is a particularly unusual type of photonic crystal coloration, according to research soon to appear in the journal Physical Review E.

Brown is a mixture of light of different colors. Generally, photonic crystals in animal coloring produce pure colors, such as blue, green, yellow or violet. Nevertheless, researchers at Fudan University in Shanghai have found that the brown in peacocks' feathers is indeed due to microscopic structure. The researchers' experiments and analysis show that peacocks' brown microstructures are a good deal more complex than most natural photonic crystals.

Mimicking the photonic crystals in peacock tail feathers could lead to new ways to manipulate light in cutting edge optical instruments. In addition, the discovery points the way to new paints and coatings that are not susceptible to the chemical changes that can degrade pigments over time.

Publication: Y. Li et al., Physical Review E, Forthcoming article

Source: American Physical Society

Explore further: Using magnetic fields to understand high-temperature superconductivity

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

First glimpse inside a macroscopic quantum state

3 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

16 hours ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Fluctuation X-ray scattering

19 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Understanding spectral properties of broadband biphotons

21 hours ago

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.