Lighter filling in Earth’s core

Jun 23, 2005

New experiments conducted by a team led by the Carnegie Institution’s Dr. Jung-Fu Lin suggest that the core of the Earth may contain more light elements than previously thought. The research is published in the June 24, 2005, issue of Science.

“The composition of Earth’s core has been the subject of scientific debate for years,” commented Lin. “The prevailing consensus is that the outer core is a molten cauldron mostly of iron with some light elements and the inner core is made of solid iron with a little bit of light elements. We can’t sample the core directly, so we’ve made these estimates by reading seismic waves as they travel through the interior and through experimentation and theory,” he continued.

As depth increases inside the Earth, so does the pressure and heat. The pressure in the core varies from 1.4 million times the pressure at sea level at the outer edge of the core, to 3.6 million times that pressure at its center. Current models suggest that center conditions are also a scorching 8,000 to 10,000 degrees Fahrenheit (5000 to 6000 K). Materials in this environment become so compressed, dense, and hot that the atoms behave very differently from those under normal conditions. Until now, scientists have deduced the nature of core materials by measuring seismic waves as they pass through the interior and applying a law known as Birch’s law, which predicts that sound velocities travel slower through less-dense material and faster through denser materials. The scientists discovered through their experiments on iron, however, that temperature had a significant effect, with a resulting impact on the velocity/density relationship. “We found that when temperature is added to the experiment, the velocities of the compression waves (the waves that force atoms closer for a moment) and shear waves (when the atoms rub against each other) actually decreased with increasing temperature even though the pressure was moderately high,” stated co-author of the study Wolfgang Sturhahn.

The researchers compared their results with seismic-wave measurements of the Earth’s interior and determined that there are more light elements contained in the iron there than previously inferred from linear extrapolation at room temperature.

“The law is a first approximation,” stated Lin. “It assumes that we only needed to consider the density effect in the interior. Our study demonstrates that we need to deal with the pressure and temperature effects.”

Using a diamond-anvil pressure cell, the scientists subjected iron to pressures up to about 720,000 times the atmospheric pressure at sea level, and with laser heating they increased temperatures up to 2,600° F. They witnessed the changes to the iron atoms with the intense X-rays of the nation's premier third-generation synchrotron source, the Advanced Photon Source at Argonne National Laboratory near Chicago. They measured the sound velocity through the compressed, hot iron with a sophisticated technique known as nuclear resonant inelastic X-ray scattering. “The development of this new technique was crucial for our studies, which had to advance far beyond the more common structure investigations to provide us with these unique insights into the planetary interior,” commented Sturhahn, who developed the technique and is leading the High Resolution X-ray Scattering group at the Advanced Photon Source.

“For the past 50 years, Birch’s law has helped geophysicists to understand dense materials under the extreme conditions in Earth’s interior. Our results show how new technology can bring added understanding of the interior,” reflected co-author of the study Ho-kwang (Dave) Mao, the director of the High-Pressure Collaborative Access Team at the Advanced Photon Source.

Source: The Carnegie Institution of Washington

Explore further: Flatland, we hardly knew ye: Unique 1-D metasurface acts as polarized beam splitter, allows novel form of holography

add to favorites email to friend print save as pdf

Related Stories

Solar system simulation reveals planetary mystery

Sep 08, 2014

When we look at the Solar System, what clues show us how it formed? We can see pieces of its formation in asteroids, comets and other small bodies that cluster on the fringes of our neighborhood (and sometimes, ...

Two dynamos drive Jupiter's magnetic field

Aug 21, 2014

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

Earth's core reveals an inner weakness

Jan 27, 2014

(Phys.org) —The word "core" conjures up an image of something strong. However, new experiments show that the iron found in the Earth's core is relatively weak. This finding is based on x-ray spectroscopy ...

Earth's iron core is surprisingly weak, researchers say

May 17, 2013

The massive ball of iron sitting at the center of Earth is not quite as "rock-solid" as has been thought, say two Stanford mineral physicists. By conducting experiments that simulate the immense pressures deep in the planet's ...

Recommended for you

Three-dimensional metamaterials with a natural bent

Oct 24, 2014

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Scientists develop compact medical imaging device

Oct 23, 2014

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

User comments : 0