Nanotech memory company poised to profit in billion dollar markets

Jun 21, 2005

"Nanomech is a new non-volatile memory technology which is completely different to the existing one," explains Dr Mike Beunder, CEO of Cavendish Kinetics. "The existing technology involves storing charge whereas ours operates mechanically like a switch."
Cavendish Kinetics develops nanotechnology-based non-volatile memory. To support this activity, Cavendish Kinetics has developed its own patent-protected range of Nanomech embedded non-volatile memory products.

Nanomech, using standard CMOS process technology, enables the implementation of unique memory storage devices with ultra low-power, high speed read/write characteristics that function fully up to 200°C and are completely insensitive to radiation. Compared to current technology, Nanomech storage devices offer 200 times better write performance while consuming 50 to 100 times less power.

Cavendish Kinetics currently offers three embedded non-volatile memory products, an electrically programmable Fuse (eFuse), an embedded One-Time-Programmable (eOTP) memory product, and an embedded multi-time programmable (eMTP) memory product.

“Cavendish Kinetics is a spin-off from Cavendish Laboratory at Cambridge University,” mentions Beunder, “and the company’s founder and CTO, Dr Charles Smith, is still a Reader at the Laboratory.” When Smith established Cavendish Kinetics in 1994, Cambridge University transferred ownership of its nanotech non-volatile memory patents to the company in exchange for stock.

Beunder believes the target market for the new memory technology to be worth $4.75bn and will grow to $6bn by 2008. Potential applications for the Nanomech storage devices include micro-controllers, RFID and smartcards used in the mobile, automotive, space, defence and medical sectors. To help enter these markets, the company recently opened a US sales office in Silicon Valley.

The company is currently seeking about $10m in second round VC investment in order to establish a worldwide marketing and sales organisation as well as to finance the further development of eOTP and eMTP. Attracting new investment is a key activity for Beunder and he recently seized the opportunity to present his company’s business plan to investors at the European Tech Investment Forum in London, one of Europe’s leading events for ICT entrepreneurs and investors.

Cavendish Kinetics is currently working on the 4.68m euro PROMENADE IST project, which involves seven partners including Bosch and IMEC. The project is developing a process management and design system for microsystem technologies. The computer system will enable process engineers to simulate and optimise silicon-based thin film processes and help designers to understand technological constraints when designing microsystems for manufacture. Cavendish Kinetics is responsible for integrating its in-house management and tracking system for CMOS process developments into the PROMENADE system.

The company was also involved in the EUREKA-funded MESCI-I project, which integrated MEMS nanoswitches in mainstream CMOS processes and helped to advance the firm’s Nanomech technology. “The MESCI-I project was regarded as so successful,” announces Beunder proudly, “that we have just won the LYNX Award for 2005 from the EUREKA programme.”

Source: IST Results

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Hi-tech innovation gauges science learning in preschoolers

Apr 07, 2014

Researchers are blending technology with nature, as they present details on an iPad application to examine how young children are learning science skills in nature-themed outdoor play settings. Alan Wight, a doctoral candidate ...

Speed-bump device converts traffic energy to electricity

Nov 09, 2011

(PhysOrg.com) -- The two little words "speed bump" usually evoke unpleasant memories of spilled coffee and back-seat arguments questioning if and where you learned how to drive. In some green energy circles, ...

Recommended for you

Innovative strategy to facilitate organ repair

8 hours ago

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

9 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...