The Dye with the Pumpkin Cuff

Jun 20, 2005

Complexation with a large cuff-shaped molecule stabilizes rhodamine dye fluorescence

When irradiated, fluorescent dyes emit light at a different wavelength; for scientists and engineers, these dyes are extremely important aides, as active media in dye lasers, as markers for biomolecules in diagnostics, or for the detection of single molecules. A team from the International University of Bremen has now succeeded in significantly raising the stability of a rhodamine dye by placing it into a kind of molecular cuff.

Most attempts to improve the properties of rhodamines, one of the most important classes of fluorescent dyes, have not been very successful. A new additive now makes it possible. The wonder-molecule used by Werner Nau and Jyoti Mohanty is cucurbituril. The unusual sounding name is derived from cucurbitaceae, the botanical name for the pumpkin family of plants, because the structure of the molecule is like an open-ended pumpkin that has been hollowed out.

When cucurbituril is added to a solution of rhodamine, one dye molecule slips into the cavity of each of the little "pumpkins". Safely ensconced in this way, the rhodamine displays an amazing stability; even highly diluted solutions of the stabilized rhodamine can be stored for a long time without loss of fluorescence due to adsorption of the dye on the surface of the storage flask. In concentrated solutions, like those used for dye lasers, the main problem is aggregation of the dye molecules with each other. The pumpkin hinders this "stickyness" of the rhodamine molecules like a wrapper. Another problem is bleaching of the dye by longer or more intensive irradiation. This often makes it impossible to observe biological samples stained with fluorescence dyes under the fluorescence microscope for extended periods. The pumpkin provides the necessary protection and because the cuff is transparent like a ball of glass, the dye can capture just as many light particles as before. In contrast to many previous materials used for stabilization, cucurbituril in no way affects the fluorescence of rhodamine.

It is noteworthy that the fluorescence lifetime of the enclosed rhodamine molecules is extended. This is the time that passes before the light energy absorbed by a dye molecule is given off as fluorescence. Various investigative techniques depend on this value, because it allows conclusions to be drawn about the environment of the dye molecule. A higher value raises the contrast in fluorescence microscopy.

Source: International University of Bremen

Explore further: US company sells out of Ebola toys

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

19 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

21 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Recommended for you

US company sells out of Ebola toys

Oct 17, 2014

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

New progress of the Neogene Suidae research

Oct 17, 2014

Dr. Hou Sukuan and Prof. Deng Tao from the Institute of Vertebrate Paleontology and Paleoanthropology(IVPP), Chinese Academy of Sciences reported a new species of Chleuastochoerus from the Linxia Basin, Gansu ...

Gypsies and travellers on the English Green Belt

Oct 17, 2014

The battle between Gypsies, Travellers and the settled community over how land can be used has moved to the Green Belt, observes Peter Kabachnik of the City University of New York.

Cadavers beat computers for learning anatomy

Oct 16, 2014

Despite the growing popularity of using computer simulation to help teach college anatomy, students learn much better through the traditional use of human cadavers, according to new research that has implications ...

User comments : 0