Highly stable foams by the attachment of silica nanoparticles to bubble surfaces

Jun 20, 2005

What do a glass of beer, whipped cream, dish-washing detergent, shampoo and foam sealant have in common? They should foam properly. Foams are gas bubbles confined by fluid or solid boundaries. Whereas solid foams are quite stable (foam rubber and whipped cream, for example), most fluid foams quickly collapse: if a beer is left to stand too long, the head eventually disappears; in a similar manner, the best part of a bubble-bath is over. To stabilize foams, surface-active reagents or proteins are generally used. British researchers have developed foam stabilizers that are more effective: highly disperse silica nanoparticles.

Why do foams collapse? The fluid surrounding the gas bubbles slowly flows downward and partially evaporates. As a result, the lamellae between vesicles becomes thinner and thinner. The bubbles at the surface eventually burst, other bubbles fuse, and small bubbles shrink in favor of larger ones. Bernard Binks and Tommy Horozov discovered that miniscule silica nanoparticles can counteract this effect.

The particles attach themselves to the surfaces of the small bubbles. Standard surface-active reagents do this as well, but nanoparticles differ in that they do not detach from the bubble surface. The secret to the success of the nanoparticles is their finely balanced hydrophobicity. This can be controlled by the manner in which the hydrophilic silica nanoparticles are purposefully covered with a water-repellent layer. The more hydrophobic the particles become, the more firmly they press themselves into the air-bubble surface. The nanoparticles cannot be completely hydrophobic, however, as this would impede their hydration by water altogether. Silica particles work best with intermediate hydrophobicity.

Under the microscope, bubble surfaces appear corrugated. The bubbles are covered with a closely packed layer of particles. It is possible that such stable bubbles are formed by the fusing of smaller bubbles, which themselves are not as well-covered with particles. As a given volume defined by many small bubbles has a larger surface area than the same volume in fewer, larger bubbles, the process of bubble fusion eventually creates the appropriate available space for the nanoparticles. As the particles cannot become detached, they move ever closer together, and the surface corrugates. The closely packed nanoparticles protect the air bubbles from collapse, and thus stabilize the foam.

Link: Angewandte Chemie International Edition

Source: John Wiley & Sons, Inc.

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Relaxing DNA strands by using nano-channels

20 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

–°alculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0