NASA Successfully Demonstrates Innovative Nanosatellite System

Jun 16, 2005

Big things can come in small packages, and engineers at NASA's Johnson Space Center are making progress on a tiny spacecraft that holds major promise for future exploration.
Work on the volleyball-sized Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) moved forward with successful initial tests on its docking system. The Mini AERCam is designed to help astronauts and ground crews see outside the spacecraft during a mission. During ground-based testing, the device was able to work with the docking system that serves as an exterior home base for housing and refueling the nanosatellite.

Since early 2000, NASA engineers have been working to create a miniaturized spacecraft that can be deployed from a parent vehicle to inspect the exterior or provide remote-controlled views during space operations. Early development is funded by the Space Shuttle Program Office, which is considering using Mini AERCam to inspect the Shuttle's heat shield in space. The nanosatellite will not be used on the Return to Flight mission (STS-114), but holds long-term promise for future space operations.

The Mini AERCam could provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers. For Shuttle or International Space Station missions, Mini AERCam could support external robotic operations by supplying situational awareness views to operators, supplying views of spacewalk operations to flight and/or ground crews, and carrying out independent visual inspections.

Free-flying spacecraft such as Mini AERCam will be particularly critical for external inspections during long-duration missions, as spacewalks will be kept to a minimum and external camera views may be limited.

The Mini AERCam prototype is just 7.5 inches in diameter and weighs only 10 pounds. The tiny free flyer is designed to be operated by on-orbit flight crews or by ground control personnel. Either could command the nanosatellite to fly automatic maneuvers.

Mini AERCam could be deployed and retrieved many times during a single space mission, with the use of a hangar-based docking system located on the exterior of the vehicle. The free-flyer portion of the docking system includes a vision-based system for autonomous navigation and an electromagnetic capture capability. The docking culminates in a precision hard-dock, suitable for connecting propulsion and electrical recharge elements. The docking capability has been demonstrated both on an air-bearing table and in orbital simulation environments.

For human spaceflights, automatic deployment and docking eliminates the need for astronauts to perform a spacewalk to release and retrieve the free flyer. For robotic missions, external basing is essential. The docking system provides a protective base during periods it is not needed for mission operations.

Mini AERCam incorporates significant upgrades in a package that is one-fifth the volume of its precursor, the 35-pound, 14-inch AERCam Sprint. It flew as a Space Shuttle flight experiment on STS-87 in 1997. Upgrades include a full suite of miniaturized avionics, instrumentation, digital imagers, communications, navigation, video, power and propulsion subsystems.

Technology innovations include rechargeable xenon gas propulsion, a rechargeable lithium ion battery, custom avionics based on the PowerPC 740/750 microprocessor, "camera-on-a-chip" imagers with video compression, micro electromechanical system gyroscopes, precise relative GPS navigation, digital radio frequency communications, micro-patch antennas, digital instrumentation networking and compact mechanical packaging.

Source: NASA

Explore further: SpaceX launches supplies to space station

add to favorites email to friend print save as pdf

Related Stories

Little Free Flier Offers Astronauts An Eye Outside

Jun 20, 2005

Size-wise, it's just a squirt. But it offers astronauts a new way to get a look at trouble outside a spacecraft. Engineers at NASA's Johnson Space Center in Houston believe the Mini AERCam holds considerable promise for ...

Recommended for you

Quest for extraterrestrial life not over, experts say

38 minutes ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Sun emits a mid-level solar flare

50 minutes ago

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

3 hours ago

( —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

3 hours ago

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Continents may be a key feature of Super-Earths

5 hours ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

User comments : 0

More news stories

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...