Studying the Past, Pioneering the Future

Jun 13, 2005
Studying the Past, Pioneering the Future

Astronomers are meeting this week in Cambridge, Mass., to discuss recent advances generated by a new astronomical facility-the Submillimeter Array (SMA) on Mauna Kea, Hawaii. A joint project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), the SMA has opened a new window onto the cosmos by observing radiation from some of the coldest, dustiest, and most distant objects in the universe.

Image: The Atacama Large Millimeter Array (ALMA), shown here in this artist's conception, will follow the trail blazed by the SMA and bring a depth of understanding to planet, star and galaxy formation in the southern skies. To be located in Chile, ALMA will be comprised of 64 12-meter-diameter movable antennas, providing a resolution as fine as 0.01 arcseconds. Credit: National Astronomical Observatory of Japan (NAOJ)

"The SMA is the latest in a long line of cutting-edge research facilities developed by the Smithsonian," said Jim Moran, SMA director. "It demonstrates the Smithsonian's commitment to remaining at the frontier of scientific research."

Atop the highest volcanic peak in the Hawaiian Island chain, the SMA explores the universe by detecting light at wavelengths (or colors) that are not visible to the human eye. It receives millimeter and submillimeter radiation, so named because the wavelength ranges from 0.3 to 1.7 millimeters, or 0.01 to 0.07 inches. The SMA combines signals from eight 6-meter-diameter movable antennas to achieve very high resolution, comparable to the best ground-based optical telescopes.

At submillimeter wavelengths, the SMA can peer into the most distant reaches of the observable universe, studying objects whose light has taken billions of years to reach the earth. In doing so, it sees those objects as they existed billions of years ago, when the universe was a fraction of its present age.

SMA observations have uncovered some surprises. For example, astronomers recently focused on a class of objects called submillimeter galaxies, which were discovered using the James Clerk Maxwell Telescope, also on Mauna Kea. Hubble images were unable to discern the nature of these primordial galaxies because they were too distant or too dusty.

The SMA has clarified the nature of these mystery objects, revealing that many submillimeter galaxies are undergoing intense bursts of star formation hidden behind massive amounts of dust.

"The SMA literally has seen what Hubble can't see," said astronomer Daisuke Iono of the Harvard-Smithsonian Center for Astrophysics (CfA). "The unique capabilities of the SMA allow it to detect and make high-resolution images of these young galaxies."

"With the SMA, we immediately pinpointed the exact location of two galaxies that were actively forming stars at an exceptional rate more than 10 billion years ago," added astronomer Alison Peck (CfA).

SMA observations are expected to help clarify the nature of many cosmic objects from distant galaxies to nearby star forming regions. It will examine those objects at high angular resolution in preparation for more detailed and more sensitive studies by its eventual successor, the Atacama Large Millimeter Array (ALMA).

"SMA is blazing a path of discovery across northern skies that ALMA will follow as it brings a depth of understanding to planet, star and galaxy formation in the southern skies," said Al Wootten, ALMA project scientist.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Fermi finds a 'transformer' pulsar

add to favorites email to friend print save as pdf

Related Stories

Celebrating a decade of the Submillimeter Array

Jun 25, 2014

(Phys.org) —Ten years ago, eight antennas on the summit of Mauna Kea, Hawai'i, united to form a telescope unlike any other. Since then the Submillimeter Array (SMA) has examined the universe in unprecedented ...

Lensed galaxies

Nov 12, 2010

In 1915, Einstein amazed the world by predicting that the path of light could be bent by mass. As a consequence, light from a distant galaxy passing by an intervening galaxy en route to earth will be distorted. ...

Astronomers unveiling life's cosmic origins

Feb 12, 2009

(PhysOrg.com) -- Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers ...

Submillimeter Eagle Eyes on Mauna Kea

Nov 20, 2008

(PhysOrg.com) -- Three observatories on Mauna Kea have come together to form the world's most powerful facility for detailed submillimeter imaging. An exploratory project, the Extended Submillimeter Array ...

Recommended for you

Fermi finds a 'transformer' pulsar

14 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

New launch date set for ISS delivery vessel

15 hours ago

A robot ship will be launched from Kourou, French Guiana, after a five-day delay on July 29 to deliver provisions to the International Space Station, space transport firm Arianespace said Tuesday.

The heart of an astronaut, five years on

16 hours ago

The heart of an astronaut is a much-studied thing. Scientists have analyzed its blood flow, rhythms, atrophy and, through journal studies, even matters of the heart. But for the first time, researchers are ...

User comments : 0