Researcher Discovers Universe Building Block Evolution

Jun 09, 2005

The building blocks of planets and the life on them are formed inside of stars and returned to space in the form of stardust. In a new study, a University of Missouri-Columbia researcher discovered the formation of this stardust does not happen as expected, resulting in implications for star and planet formation.

"Understanding the nature of the material returned to space by dying stars is essential for our understanding of galactic chemistry, planet and star formation and the cosmos as a whole," said Angela Speck, assistant professor of astrophysics. "We always knew this process took place; we are now taking a big step toward understanding how this works."

Stars, like the sun, eventually run out of hydrogen in their cores and become red giant stars and asymptotic giant branch (AGB) stars. AGB stars are very bright, about 3,000 times brighter than the sun, but about half as hot as the sun. These stars are unstable and pulsate. The pulsations cause some of the atmospheric gas in these stars to be lost in surrounding space. As this hot gas drifts away from the star, it cools and forms dust grains. The material that sloughs off the star's outer shell and forms dust grains travels into interstellar space and is incorporated into large dust clouds that eventually will collapse to form new stars and planetary systems.

AGB stars in which the abundance of carbon atoms exceeds that of oxygen atoms have chemistries dominated by carbon and are known as carbon stars. One dust species known to form in the shells around carbon stars is silicon carbide (SiC). SiC has been found in meteorites; and many of these grains are believed to have formed around carbon stars. Results from the study of these presolar, meteoritic SiC grains suggest that the nature of the SiC forming in carbon star outflows changes as the star evolves. The star initially produces relatively large grains and the grains formed are progressively smaller as the star dies.

"This finding is completely opposite of what was thought to be true," Speck said. "As the gas becomes denser the grains are getting smaller."

Speck presented observational evidence to confirm this suggestion at the American Astronomical Society meeting in Minneapolis, Minnesota. The study's poster presentation - The Nature and Evolution of Silicon Carbide in the Outflows of Carbon Star - is authored by Speck and co-authored by Anne Hofmeister, Department of Earth and Planetary Science, Washington University, St. Louis, Mo.; and Grant Thompson, Department of Physics and Astronomy student at MU.

Link: Poster image is available online.

Source: University of Missouri

Explore further: NASA spacecraft nears historic dwarf planet arrival

add to favorites email to friend print save as pdf

Related Stories

Astrophysicist explores star formation in Orion's belt

Feb 26, 2015

U.S. Naval Research Laboratory (NRL) astrophysicist Dr. T.L. Wilson is part of a multi-national research team that has discovered an outburst in the infrared from a deeply embedded protostar. The Herschel ...

Planck reveals the dynamic side of the Universe

Feb 11, 2015

The Planck collaboration, which includes the CNRS, the French Alternative Energies and Atomic Energy Commission (CEA), the French National Space Agency (CNES) and several French universities and institutions, ...

Ten interesting facts about asteroids

Feb 03, 2015

At first glance, looking at a bunch of space rocks doesn't sound that exciting. Like, aren't they just a bunch of rubble? What use can they be in understanding the Solar System compared to looking at planets ...

Cosmic puzzle settled: Comets give us shooting stars

Jan 26, 2015

Suspicions that shooting stars come from comet dust, transformed into fiery streaks as they hit Earth's atmosphere, have been bolstered by Europe's Rosetta space mission, scientists reported Monday.

Telescope to seek dust where other Earths may lie

Jan 22, 2015

The NASA-funded Large Binocular Telescope Interferometer, or LBTI, has completed its first study of dust in the "habitable zone" around a star, opening a new door to finding planets like Earth. Dust is a ...

Recommended for you

Far from home: Wayward cluster is both tiny and distant

4 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

Why don't we search for different life?

8 hours ago

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don't we look for the stuff that's really different?

OSIRIS catches glimpse of Rosetta's shadow

9 hours ago

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. ...

Kamikaze comet loses its head

9 hours ago

Like coins, most comet have both heads and tails. Occasionally, during a close passage of the Sun, a comet's head will be greatly diminished yet still retain a classic cometary outline. Rarely are we left ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.