Theorist helps develop first single molecule transistor

Jun 07, 2005

A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits

Dr Werner Hofer, from the University's Surface Science Research Centre, is one of an international team of scientists who have created a prototype that demonstrates a single charged atom on a silicon surface can regulate the conductivity of a nearby molecule. Computers and other technology based on this concept would require much less energy to power, would produce much less heat, and run much faster.

Currently, most electronic devices are based on silicon. There is, however, a limit to how many transistors can be packed into a given volume of silicon as the currents in these transistors are high and can overheat. By miniaturizing a transistor, the time during which an electron can pass through it is reduced and therefore the device can be operated with much higher frequencies and take up much less space.

Dr Hofer, a theorist, who worked in collaboration with colleagues from the National Institute for Nanotechnology of the National Research Council in Canada and the University of Alberta, provided the theoretical background in an experiment to examine the potential for electrical transistors on a much smaller, molecular scale. Their findings have been published in the journal, Nature.

Molecules are extremely small, on the scale of a nanometre. The team tested the transistor potential of a molecule by using the electrostatic field emanating from a single atom to regulate the conductivity of a molecule, allowing an electric current to flow through the molecule. These effects were easily observed at room temperature, in contrast to previous molecular experiments that had to be conducted at temperatures close to absolute zero, and with much smaller current amplification. Dr Hofer explains: "Our experiments demonstrate that we can control the current through a single molecule by charging a single atom on a silicon surface, while all surrounding atoms remain neutral.

"Our research brings us a step nearer to using molecular electronics which would not only prove more efficient and cheaper than current devices, but would also have the potential to power green technology because of the biodegradable nature of the device."

He added: "Our prototype is a scientific breakthrough in molecular electronics. We have successfully shown the potential for devices of unheard-of smallness and unheard-of efficiency. This is the first time anyone has shown that a molecule is in fact a transistor."

Source: University of Liverpool

Explore further: Natural nanocrystals shown to strengthen concrete

Related Stories

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

New transitory form of silica observed

Mar 20, 2015

A Carnegie-led team was able to discover five new forms of silica under extreme pressures at room temperature. Their findings are published by Nature Communications.

Fullerene chemistry with silicon

Mar 18, 2015

Goethe University chemists have managed to synthesise a compound featuring an Si20 dodecahedron. The Platonic solid, which was published in the Angewandte Chemie journal, is not just aesthetically pleasi ...

Scientists develop cool process to make better graphene

Mar 18, 2015

A new technique invented at Caltech to produce graphene—a material made up of an atom-thick layer of carbon—at room temperature could help pave the way for commercially feasible graphene-based solar cells ...

Recommended for you

Natural nanocrystals shown to strengthen concrete

3 hours ago

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

From tobacco to cyberwood

Mar 30, 2015

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.