Theorist helps develop first single molecule transistor

Jun 07, 2005

A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits

Dr Werner Hofer, from the University's Surface Science Research Centre, is one of an international team of scientists who have created a prototype that demonstrates a single charged atom on a silicon surface can regulate the conductivity of a nearby molecule. Computers and other technology based on this concept would require much less energy to power, would produce much less heat, and run much faster.

Currently, most electronic devices are based on silicon. There is, however, a limit to how many transistors can be packed into a given volume of silicon as the currents in these transistors are high and can overheat. By miniaturizing a transistor, the time during which an electron can pass through it is reduced and therefore the device can be operated with much higher frequencies and take up much less space.

Dr Hofer, a theorist, who worked in collaboration with colleagues from the National Institute for Nanotechnology of the National Research Council in Canada and the University of Alberta, provided the theoretical background in an experiment to examine the potential for electrical transistors on a much smaller, molecular scale. Their findings have been published in the journal, Nature.

Molecules are extremely small, on the scale of a nanometre. The team tested the transistor potential of a molecule by using the electrostatic field emanating from a single atom to regulate the conductivity of a molecule, allowing an electric current to flow through the molecule. These effects were easily observed at room temperature, in contrast to previous molecular experiments that had to be conducted at temperatures close to absolute zero, and with much smaller current amplification. Dr Hofer explains: "Our experiments demonstrate that we can control the current through a single molecule by charging a single atom on a silicon surface, while all surrounding atoms remain neutral.

"Our research brings us a step nearer to using molecular electronics which would not only prove more efficient and cheaper than current devices, but would also have the potential to power green technology because of the biodegradable nature of the device."

He added: "Our prototype is a scientific breakthrough in molecular electronics. We have successfully shown the potential for devices of unheard-of smallness and unheard-of efficiency. This is the first time anyone has shown that a molecule is in fact a transistor."

Source: University of Liverpool

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Reimagining silicon

Jun 13, 2014

Silicon (Si) is ubiquitous in modern semiconductor manufacturing. Well-established procedures for its processing, perfected over more than five decades of industrial use, enable a diverse array of electronic ...

Chemical sensor on a chip

Jun 11, 2014

Using miniaturized laser technology, a tiny sensor has been built at the Vienna University of Technology which can test the chemical composition of liquids.

A new class of recyclable thermoset plastics

May 16, 2014

Plastics comprise around 10% of solid waste in Australia. And while we can recycle certain types, there is a group of particularly stable plastics called thermosets, common in electronic devices, which c ...

Recommended for you

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 0