New carbon nanotube production method with the possibility of scale up to large industrial levels

Jul 21, 2004
Nanotube

McGill University researchers have developed a new method for producing carbon nanotubes that has great commercial promise. The work of Professor Jean-Luc Meunier and doctoral student David Harbec, both of the Department of Chemical Engineering, is the subject of a patent application, and the findings of their team have just been published in the Journal of Physics D: Applied Physics.

Carbon nanotubes (CNTs), discovered in 1991, are seamless cylinders composed of carbon atoms in a regular hexagonal arrangement, closed on both ends by hemispherical endcaps. They exhibit remarkable mechanical and electronic properties. Applications include high-strength composites, advanced sensors, electronic and optical devices, catalysts, batteries, and fuel cells.

The current low-volume production methods and high production costs are the limiting factors in the CNT high-growth market. The McGill researchers developed a new method and apparatus to produce CNTs with the possibility of scale up to large industrial levels that is based on thermal plasma technology. Plasmas form the fourth state of matter after gas, while the term "thermal plasmas" refers to their typical state of almost thermal equilibrium between electrons, ions, atoms and molecules. Thermal plasmas typically have temperatures between 4,000°C and 25,000°C, and are created by electric arcs or magnetic induction discharges.

"The use of carbon nanotubes in advanced materials is not only limited by their price, but more importantly by their unavailability in large quantities," notes Prof. Meunier. "This method using thermal plasmas brings production towards industrial levels at megawatt powers, and Quebec is an important player worldwide in thermal plasmas."

Meunier and Harbec are the authors, along with McGill researchers Liping Guo, Raynald Gauvin and Nadine El Mallah, of the article "Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch," appearing in the July 14 issue of Journal of Physics D: Applied Physics.

McGill University is currently seeking licensees to its patent-pending technology for producing CNTs, and the McGill researchers have just received an Idea to Innovation grant from the Natural Sciences and Engineering Research Council of Canada to help bring their technology closer to market.

Dr. Meunier is a member of the Plasma-Québec Network and of the Plasma Technology Research Centre, a McGill University and Université de Sherbrooke collaboration in the field of thermal plasmas. In terms of scientific manpower and funding, Quebec's contribution exceeds 50% of the total Canadian contribution to plasma technologies.

The original press release is available here

Explore further: Nano engineering advances bone-forming material

add to favorites email to friend print save as pdf

Related Stories

Charging portable electronics in 10 minutes

Jun 10, 2014

Researchers at the University of California, Riverside Bourns College of Engineering have developed a three-dimensional, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion ...

Plasma tool for destroying cancer cells

Mar 25, 2014

Plasma medicine is a new and rapidly developing area of medical technology. Specifically, understanding the interaction of so-called atmospheric pressure plasma jets with biological tissues could help to ...

Rosetta: To chase a comet

Jan 20, 2014

Comets are among the most beautiful and least understood nomads of the night sky. To date, half a dozen of these most heavenly of heavenly bodies have been visited by spacecraft in an attempt to unlock their ...

Recommended for you

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0