Ancient DNA Confirms Single Origin of Malagasy Primates

May 27, 2005

Yale biologists have managed to extract and analyze DNA from giant, extinct lemurs, according to a Yale study published in a recent issue of the Proceedings of the National Academy of Sciences.
Radiocarbon dating of the bones and teeth from which the DNA was obtained reveal that each of the individuals analyzed died well over 1,000 years ago, according to the senior author, Anne Yoder, associate professor in the Department of Ecology and Evolutionary Biology.

Living lemurs comprise more than 50 species, all of which are unique to the island of Madagascar, which is the world’s fourth largest island and east of Africa. Evolutionary analysis of the DNA obtained from the extinct giants reveals that they, like the living lemurs, are descended from a single primate ancestor that colonized Madagascar more than 60 million years ago, Yoder said.

The biologists extracted DNA from nine subfossil individuals in two of the more bizarre extinct species, Palaeopropithecus and Megaladapis. The first has been likened to tree sloths and the second compared to koala bears. Both ranged in body weights from 100 to 150 pounds, as compared to the largest living lemur, Indri indri, which weighs in at fewer than 15 to 17 pounds.

“The most important conclusion to be drawn from our study is that the phylogenetic placement of subfossil lemurs adds additional support to the hypothesis that non–human primates colonized Madagascar only once,” Yoder said. “However, the limited taxonomic success of our study leaves open the possibility that data from additional taxa will overturn this increasingly robust hypothesis.”

Yoder said the researchers’ results support the close relationship of sloth lemurs (Palaeopropithecus) to living indriids, but Megaladapis does not show a sister–group relationship with the living genus Lepilemur. “The classification of the latter in the family Megaladapidae is misleading,” she said.

Yoder said that damaging effects of moisture, ultraviolet irradiation, and tropical heat on DNA survival likely contributed to the inability to obtain DNA from some species. The only samples to yield DNA from tropical localities were the two individuals that were used as positive controls, Yoder said.

“The results of our study contribute to the mountain evidence that suggests that prospects for ancient DNA studies from the tropics are less promising than those from higher latitudes, but when the results are potentially of such compelling interest, it’s always worth a try,” she said.

Source: Yale University

Explore further: Dinosaur footprints set for public display in Utah

add to favorites email to friend print save as pdf

Related Stories

Ahead of Emmys, Netflix already winning online

3 hours ago

Even if it doesn't take home any of the major trophies at Monday's Emmy Awards, Netflix will have already proven itself the top winner in one regard: Internet programming.

US warns shops to watch for customer data hacking

3 hours ago

The US Department of Homeland Security on Friday warned businesses to watch for hackers targeting customer data with malicious computer code like that used against retail giant Target.

SpaceX rocket explodes during test flight

3 hours ago

A SpaceX rocket exploded in midair during a test flight, though no one was injured, as the company seeks to develop a spacecraft that can return to Earth and be used again.

Official says hackers hit up to 25,000 US workers

3 hours ago

The internal records of as many as 25,000 Homeland Security Department employees were exposed during a recent computer break-in at a federal contractor that handles security clearances, an agency official said Friday.

Recommended for you

Fossil arthropod went on the hunt for its prey

Aug 22, 2014

A new species of carnivorous crustacean has been identified, which roamed the seas 435 million years ago, grasping its prey with spiny limbs before devouring it. The fossil is described and details of its lifestyle are published ...

User comments : 0