'Wet' Electrons Provide Easiest Way to Transport Charge

May 24, 2005

Technology has potential to produce clean fuel "if we could make it more efficient"

The task of transporting electrical charges between metal-oxide and water phases is critical in such technologies as catalysis, sensors, and electrochemistry. In a paper published in this week’s issue of the journal Science, University of Pittsburgh researchers report that "wet" electrons afford the lowest energy pathway for transporting electrons between solid and liquid states.

In their paper, titled “Wet electrons at the H2O/TiO2(110) Surface,” Hrvoje Petek, Pitt professor of physics and codirector of Pitt’s Institute of NanoScience and Engineering, and Kenneth Jordan, professor and chair of Pitt’s Department of Chemistry, extend Jordan’s previous work on the structure of electrons in small water clusters, which was named one of the top 10 breakthroughs of 2004 by Science.

Wet electrons, which occur on metal oxide surfaces, represent a transition point for electrons between solid and liquid states of matter. A tiny amount of water from the atmosphere sticks to the surfaces of the oxides and forms hydroxide molecules, which then act like “molecular-scale Velcro®,” said Petek. In the presence of energy, their positively charged hydrogen atoms attract negatively charged electrons. Those so-called “wet” electrons then determine how other molecules interact with the surfaces of metal oxides.

The researchers gave the electrons sufficient energy to achieve the wet state by directing short bursts of laser light at titanium dioxide. Titanium dioxide was used because it is a photocatalyst: Exposure to light excites its electrons, which split water molecules into hydrogen and oxygen. Because of this potential for making hydrogen from water, it is possible that titanium dioxide could be used to make a clean fuel—but the process remains inefficient, said Petek. “If we could find out how to make it more efficient by observing how electrons interact with hydrogen atoms, it would have a huge economic impact,” he added.
Petek’s research could also illuminate the interaction between protons and electrons in such biological processes as photosynthesis, in which the light energy is converted to chemical energy through correlated transport of protons and electrons, which Petek calls similar to a wet electron system “on a fundamental level.”

Petek plans to continue research on the properties of other oxide materials. In their paper, the researchers note that conditions exist to support similar states on all oxide surfaces in contact with water or with a humid atmosphere.

The paper’s other authors are Ken Onda, Bin Li, and Jin Zhao, graduate students and postdoctoral researchers in Pitt’s Department of Physics and Astronomy, and Jinlong Yang, a professor at the University of Science and Technology of China.

Source: University of Pittsburgh

Explore further: An interesting glimpse into how future state-of-the-art electronics might work

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Electric sparks may alter evolution of lunar soil

Aug 21, 2014

The moon appears to be a tranquil place, but modeling done by University of New Hampshire and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly ...

Cherry picking molecules based on their Pi electrons

Aug 18, 2014

Specialized windshield glass, everyday plastic water bottles, and countless other products are based on ethylene, a simple two-carbon molecule, which requires an energy-intense separation process to pluck ...

Molecular shuttle speeds up hydrogen production

Aug 14, 2014

An LMU team affiliated with the Nanosystems Initiative Munich (NIM) has achieved a breakthrough in light-driven generation of hydrogen with semiconductor nanocrystals by using a novel molecular shuttle to ...

Recommended for you

What is Nothing?

Aug 22, 2014

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

User comments : 0