Plant Sacrifices Cells to Fight Invaders

May 20, 2005
Plant Sacrifices Cells to Fight Invaders

Gene ensures programmed cell suicide does not go unchecked

Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PCD to create a protective zone of dead cells around the infection site to prevent the invading pathogen from spreading. But how the plants keep from killing themselves after they turn on the cell-suicide process was a mystery.

Image: Plants use programmed cell death (PCD) to create a protective zone of dead cells (brown) around the site of pathogen invasion (purple). The dead plant cells do not support viral growth and lose their interconnectedness, thereby halting the pathogen's spread. Credit: Nicolle Rager Fuller, National Science Foundation

Now, in the May 20 issue of the journal Cell, Yale University's Savithramma Dinesh-Kumar and his colleagues report finding a gene that normally propagates a "pro-survival" signal in plant tissue. Without that input, an alternate "pro-death" signal moves out of the infected areas and damages the rest of the plant.

The group studied the plant-pathogen interactions in a type of tobacco easily infected with a virus in the laboratory. The model system allowed the researchers to inactivate, or silence, a gene important to the plant's PCD response. In particular, when the gene was inactivated, the plant was unable to regulate the extent of PCD, leading to excessive cell death throughout the plant.

When a plant pathogen makes contact with its intended target, the plant cells immediately launch a set of sophisticated molecular responses. Such defense mechanisms, including PCD, are similar to immune responses exhibited by animal cells when they are fighting a disease-causing agent.

In fact, PCD is a well-researched, yet still puzzling phenomenon that has been described in virtually all cell types, both plant and animal. PCD plays a critical role in many biological processes including immune system function, embryonic development and elimination of defective cells. When PCD malfunctions, or is undermined by pathogens, the effects can be devastating, resulting in diseases such as cancer, Alzheimer's and AIDS.

Dinesh-Kumar, whose work is supported by the National Science Foundation's (NSF) Plant Genome Research program, had to first develop the gene-silencing technique to adequately inactivate the plant genes. The new technique was a success for the field of plant research and is currently being used by several research groups. NSF's Jane Silverthorne said, "This is a great example of how NSF-supported tools are enabling important basic research in plants with a broader relevance to other organisms."

Source: NSF

Explore further: China's reform of R&D budget management doesn't go far enough, research shows

add to favorites email to friend print save as pdf

Related Stories

Alibaba's revenue growth surges in latest quarter

38 minutes ago

Alibaba's quarterly revenue growth is surging again, a development that should help the Chinese e-commerce company sell its shares in what could become the technology industry's most lucrative IPO.

Water 'thermostat' could help engineer drought-resistant crops

40 minutes ago

Duke University researchers have identified a gene that could help scientists engineer drought-resistant crops. The gene, called OSCA1, encodes a protein in the cell membrane of plants that senses changes in water availability ...

Intel says world's smallest 3G modem has been launched

1 hour ago

Analysts say why not. Intel is going after its own comfortable stake in the mobile market, where connectivity for wearables and "Internet of Things" household items will be in high demand. Intel on Tuesday ...

Recommended for you

Precarious work schedules common among younger workers

Aug 29, 2014

One wish many workers may have this Labor Day is for more control and predictability of their work schedules. A new report finds that unpredictability is widespread in many workers' schedules—one reason ...

User comments : 0