# Probing Question: What is a supersolid?

##### May 13, 2005

"Imagine you have an orchestra together, but everyone is playing their own tune, until they begin to follow a conductor. In a normal solid, every atom has its own behavior until very close to absolute zero. Then quantum mechanics takes over and dictates everyone to play the same tune."
That's physics professor Moses Chan's musical metaphor for his discovery that atoms in a solid can condense into what he likes to call "one giant atom," a new phase of matter called a supersolid. Together with post-doctoral associate Eun-Seong Kim, Chan found that when a particular type of helium gas has frozen into a crystal at a fraction of a degree above absolute zero, it exhibits a property only seen before in superfluids: no friction.

Image: Torsional oscillator used by Moses Chan and Eun-Seong Kim to discover a new phase of matter. Courtesy of Moses Chan

To understand frictionless flow, said Chan, think of a bunch of kids sitting on a spinning merry-go-round. Normally, the more kids on the merry-go-round, the harder it is to stop the movement and reverse its direction. Chan and Kim set up an oscillator that spins back and forth like a merry-go-round shifting direction. They found that helium crystals in a normal solid state behaved as expected, with each additional crystal adding to the mass of the "merry-go-round" and increasing the resistance.

However when those same crystals are frozen below 0.2 degrees Kelvin, something unexpected happens: one percent of the solid helium stops oscillating. "It's as if a portion of the kids on that merry-go-round are sitting on perfectly smooth ball bearings, unaffected by the merry-go-round sliding back and forth underneath them," explained Chan.

Now picture 10 kids on that merry-go-round, and imagine that one has just disappeared mid-spin. This is just the kind of perplexing mystery Chan and Kim encountered when they discovered that the non-oscillating 1.5 percent of solid helium vanished during the experiment. Their clue? The increase in the speed of oscillations. As they cooled the helium to half a degree above absolute zero, the duo observed an increase in speed that typically indicates a loss of mass. (Similarly, a lighter merry-go-round spins faster.) When they heated the helium, the oscillations slowed, suggesting that the missing 1.5 percent of helium had "returned."

Although the possibility of supersolid matter had been discussed for decades, Chan's results still were startling to the physics community. At this moment, there is no single accepted theory to explain how a solid can flow through another solid without mass or friction, but everyone agrees that more experiments are needed.

For now, Chan returns to metaphor to help make sense of it all. Tiny, supercooled helium atoms become very big, even bigger than the space separating the atoms in the crystal, he explained. The atoms are forced to touch each other and overlap, as if everyone in a theater became much bigger than their chairs. The waves of the expanding atoms interact with each other as they overlap. The parts that are in synchrony become enhanced, while conflicting vibrations cancel each other out and disappear. In a moment, the atoms all obtain the same wave function, becoming like one giant atom.

"In classical physics, this cannot happen," he added bemusedly. "If I run into you, there will be a collision, and that will be it, but in quantum mechanics, we become one thing."

Source: Penn State (By Joseph Gyekis)

## Recommended for you

#### Sensitive detection method may help impede illicit nuclear trafficking

18 hours ago

According to the International Atomic Energy Agency (IAEA) the greatest danger to nuclear security comes from terrorists acquiring sufficient quantities of plutonium or highly enriched uranium (HEU) to construct ...

#### CERN: World-record current in a superconductor

20 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

#### Beam on target: CEBAF accelerator achieves 12 GeV commissioning milestone

Apr 14, 2014

Late on April 1, the crown jewel of the Department of Energy's Thomas Jefferson National Accelerator Facility ("Jefferson Lab") sparkled its way into a new era. Following an upgrade of the Continuous Electron ...

#### Modification of structural composite materials to create tailored lenses

Apr 14, 2014

Work in France is exploring cheap and simple modification of structural composite materials to create tailored lenses for near-field focussing of 60 GHz signals.

#### High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

#### Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

## More news stories

#### Sensitive detection method may help impede illicit nuclear trafficking

According to the International Atomic Energy Agency (IAEA) the greatest danger to nuclear security comes from terrorists acquiring sufficient quantities of plutonium or highly enriched uranium (HEU) to construct ...

#### CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

#### How CERN's discovery of exotic particles may affect astrophysics

You may have heard that CERN announced the discovery of a strange particle known as Z(4430). A paper summarizing the results has been published on the physics arxiv, which is a repository for preprint (not ...

#### Scientists gain new insight into mysterious electronic phenomenon

(Phys.org) —For more than a quarter of a century, high-temperature superconductors – materials that can transmit electric current without any resistance – have perplexed scientists who seek to understand ...

#### Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

#### Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

#### Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

#### New study outlines 'water world' theory of life's origins

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

#### Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

#### Sex: When standing alone makes you stand out

Looking the odd one out may seem like a recipe for mating disaster, but it could make you more attractive to the opposite sex.