Bacterial genome sheds light on synthesizing cancer-fighting compounds

May 10, 2005
Bacterial genome sheds light on synthesizing cancer-fighting compounds

Sea squirts around the world are breathing a sigh of relief, as they no longer run the risk of being harvested for their natural disease-fighting substances. Scientists recently discovered that the bacterium Prochloron didemnii, which lives symbiotically inside the sea squirt, actually produces the desired patellamides, compounds that may one day be used in cancer treatment.

Image: Scientists discovered Prochloron didemnii has the necessary genes to produce patellamides, compounds that may one day be used in cancer treatment. They were also able to transfer the patellamide genes to the laboratory workhorse bacterium, Escherichia coli, directing it to biosynthesize the product. Credit: Nicolle Rager Fuller, National Science Foundation

Despite decades of attempts, scientists could not successfully cultivate Prochloron in the laboratory once the bacterium was isolated from the sea squirt. Because samples of Prochloron were easily contaminated with remnants of life inside its animal home, scientists couldn't tell if the bacterium or the sea squirt produced the sought-after patellamides, until now.

By searching for patellamide synthesis instructions in genomic sequences, scientists found the bacterium indeed has the necessary genes to produce these potentially important biochemicals, solving the source mystery. Knowing which genes Prochloron used for patellamide production also allowed researchers to synthesize the potentially important compounds in the lab using a so-called laboratory workhorse, the bacterium E. coli.

Scientists from The Institute for Genomic Research (TIGR), the University of Utah and the University of California, San Diego, report findings in this week's online edition of the Proceedings of the National Academy of Sciences.

"This project revealed detailed information about the metabolic capabilities of Prochloron, details that proved to be difficult to determine by other means, " said Patrick Dennis, manager for Prochloron genome sequencing at the National Science Foundation, which funded the study. "Furthermore, " he added, "by producing patellamides in the lab, the team demonstrated an important proof of principle for the biosynthesis of naturally occurring marine products."

Source: NSF

Explore further: New volume documents the science at the legendary snowmastodon fossil site in Colorado

add to favorites email to friend print save as pdf

Related Stories

NASA issues 'remastered' view of Jupiter's moon Europa

6 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

6 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

LiquidPiston unveils quiet X Mini engine prototype

11 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Recommended for you

Ancient Egyptian codex finally deciphered

7 hours ago

(Phys.org) —A pair of Australian researchers, Malcolm Choat with Macquarie University and Iain Gardner with the University of Sydney, has after many decades of effort by others, succeeded in deciphering ...

Tracking Chinese aid to Africa

10 hours ago

Is a fancy new school in an African government official's hometown a coincidence, or evidence of systematic favouritism in the distribution of aid?

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.