Students Build Smaller, Smarter Heart Pump

Apr 29, 2005

A miniaturized heart pump designed by a team of University of Florida engineering students could become a life-saving alternative for patients waiting in long lines for scarce donor hearts.
The UF team is creating a device with a novel pumping technology that makes it smaller and smarter than currently available ventricular assist devices, which are too large to be implanted in many patients. The pump’s small size means also it would be the first such device in the U.S. that could be used in children.

“Current (heart pumps) are really large and complicated, so we’re aiming to build one that’s smaller and allows more types of applications,” said mechanical and aerospace engineering student Ella Kinberg, the project’s team leader.

Ventricular assist devices, or VADs, are connected to a patient’s diseased heart, internally or externally, and help it to pump blood. Although most VADs are used to sustain a patient’s life until a donor heart becomes available, they also can help patients recover from trauma such as open heart surgery, eliminating the need for a transplant. VADs also are being developed to act as long-term replacement hearts, a process known as destination therapy.

The UF student team designed the device as part of the College of Engineering’s yearlong Integrated Process and Product Design, or IPPD, program, a government- and corporate-sponsored research and education program. The team’s goal was to design a smaller, more efficient version of an innovative prototype pump originally conceived by UF biomedical engineering doctoral student Mattias Stenberg, who acted as a project adviser.

Stenberg designed the original device in 1999 while working with UF mechanical and engineering professor Roger Tran-Son-Tay. Stenberg returned to UF in 2004 to develop and test the prototype with Tran-Son-Tay and UF College of Medicine assistant professor Charles Klodell. Both Tran-Son-Tay and Klodell were faculty advisers on the IPPD project.

“The one thing that (this pump) has that no other pump has is continuous inflow with pulsating outflow,” Klodell said. “It has a continuous pre-filling chamber, something that nobody else has come up with.”

In a human heart, oxygen-rich blood enters the left atrium from the lungs and is pumped out to the body through the left ventricle. The pump prototype was modeled after this system, using a dual-chamber design that enables the pump to fill throughout the pumping cycle. A push-plate valve moves fluid into the main pumping chamber, allowing the filling to transition easily and smoothly.

Standard displacement pumps fill during the diastole phase of the pumping cycle, when the heart is relaxed, but not during the systole phase, when it contracts. Consequently, displacement pumps need to fill the same volume, but in half the time, Stenberg said.

With a continuous inflow, the UF pump is able to reduce the pressure on the blood while injecting it into the pump – an important modification because higher pumping pressure could cause damage to the red blood cells, thereby starving the body for oxygen, he said.

The pulsating outflow allows for greater control over fluid volume passing through the pump. The pump is sensitive to changes in inflow pressure as well, such as during times of increased activity, so that if the pressure increases, it starts to pump more blood – a self-regulating feature also copied from the way a human heart behaves.

The design “offers the mechanical reliability and the pulse-style flow of traditional displacement pumps with the potential for significant miniaturization,” Klodell said.

The size of the pump is restricted by available space in the abdominal cavity. Most adults can’t receive a currently available VAD, which requires a body surface area of 1.5 square meters, Stenberg said. For pediatric use, that size shrinks to 0.7 square meters.

Once the new pump has been thoroughly tested in the laboratory, the next step will be to implant the pump in a pig for live, in vivo testing. The final step in the testing, human trials, may begin within 18 to 24 months, Klodell said.

There is great need for smaller, more flexible and durable VADs, Stenberg said.

“Currently we do about 2,200 heart transplants per year, but we have about 5,000 people on the donor waiting list,” he said. “If you take a look at how many patients have end-stage heart failure, that figure goes up to 50,000 in the U.S. alone.”

“This device could save their lives,” Kinberg agreed.

Besides Kinberg, the students who worked on the device were Ariane Aniban, Jacob Cazares, Dena Mohnani, Mike Sim and Brian Stankiewicz.

Source: University Of Florida

Explore further: Greenland darkening to continue, predicts CCNY expert Marco Tedesco

Related Stories

Hackers attack Belgian press group, second in days

12 hours ago

Hackers attacked one of Belgium's top newspaper publishers on Sunday just days after Tunisian Islamist militants took control of a regional government portal to denounce US counter-terror operations.

An exoplanet with an infernal atmosphere

12 hours ago

As part of the PlanetS National Centre of Competence in Research (NCCR), astronomers from the Universities of Geneva (UNIGE) and Bern, Switzerland, have come to measure the temperature of the atmosphere of ...

Quantum Criticality in life's proteins

2 hours ago

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Recommended for you

College rankings go under the microscope

9 hours ago

Parents, students and admissions officials have combed through college and university rankings for years. However, education researchers have largely ignored the controversial lists. That's about to change, according to a ...

A call to US educators: Learn from Canada

23 hours ago

As states and the federal government in the U.S. continue to clash on the best ways to improve American education, Canada's Province of Ontario manages successful education reform initiatives that are equal parts cooperation ...

Devices or divisive: Mobile technology in the classroom

Apr 17, 2015

Little is known about how new mobile technologies affect students' development of non-cognitive skills such as empathy, self-control, problem solving, and teamwork. Two Boston College researchers say it's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.