Widespread use of high-temperature superconductors on horizon

Apr 29, 2005

From improvements in cellular base stations to the development of more efficient electric transmission lines and energy storage systems, high-temperature superconductors (HTS) are nearing their commercial viability.
Two-time University of Houston graduate, Venkat Selvamanickam, will present a special seminar – "Second-generation HTS Conductors" – from 3 to 4 p.m., Monday, May 2, in room 102 of the Houston Science Center at UH. Part of the Texas Center for Superconductivity and Advanced Materials (TcSAM) Special Seminar series, the event is free and open to the public.

Promising to meet the price-performance characteristics needed for widespread use of HTS, second-generation HTS conductors will have applications not only in space-age transit but also in advanced MRIs and better transmission lines. Selvamanickam, who received his doctorate from UH in materials engineering and master's degree from UH in mechanical engineering, will discuss the latest developments in the scale-up R&D of second-generation HTS conductors, as well as detail the remaining challenges for successful use of HTS in commercial applications.

The discovery of high-temperature superconductors that can operate using inexpensive liquid nitrogen as a coolant has opened doors to applying superconductivity to electric power devices. These HTS devices offer both performance advantages and environmental benefits.

Selvamanickam, currently a program manager of materials technology at SuperPower Inc. in Schenectady, New York, recently was named "Superconductor Industry Person of the Year 2004." Awarded by Superconductor Week, the leading publication in superconductor business and technology, this honor is the industry's most prestigious international distinction in the development and commercialization of superconductors. Given to only two recipients each year, Selvamanickam was recognized for his leadership, quality R&D and advocacy in the field.

SuperPower Inc., a wholly owned subsidiary of Intermagnetics General Corporation, uses core capabilities in materials, cryogenics and magnetics to develop electric power components such as underground transmission and distribution cables, transformers and fault current limiters, utilizing state-of-the-art second-generation HTS technology.

Source: University of Houston

Explore further: New largest number factored on a quantum device is 56,153

add to favorites email to friend print save as pdf

Related Stories

Manchester scientists boost NASA's missions to Mars

21 minutes ago

Computer Scientists from The University of Manchester have boosted NASA space missions by pioneering a global project to develop programs that efficiently test and control NASA spacecraft.

ESA image: The gold standard

42 minutes ago

The Eutelsat-9B satellite with its EDRS-A payload is shown in the anechoic test chamber of Airbus Defence and Space in Toulouse, France, having completed its final antenna pattern tests today.

Frost-covered chaos on Mars

43 minutes ago

Thanks to a break in the dusty 'weather' over the giant Hellas Basin at the beginning of this year, ESA's Mars Express was able to look down into the seven kilometre-deep basin and onto the frosty surface ...

Recommended for you

New largest number factored on a quantum device is 56,153

10 hours ago

(Phys.org)—Researchers have set a new record for the quantum factorization of the largest number to date, 56,153, smashing the previous record of 143 that was set in 2012. They have shown that the exact same room-t ...

Scientists film magnetic memory in super slow-motion

13 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.