Cassini Finds Particles Near Saturn's Moon Enceladus

Apr 27, 2005
Cassini Finds Particles Near Saturn's Moon Enceladus

The Cassini spacecraft has discovered intriguing dust particles around Saturn's moon Enceladus. The particles might indicate the existence of a dust cloud around Enceladus, or they may have originated from Saturn's outermost ring, the E-ring.

Image: During its very close flyby on March 9, 2005, the Cassini spacecraft captured this false-color view of Saturn's moon Enceladus, which shows the wide variety of this icy moon's geology.

"We are making measurements in the plane of the E-ring,” said Dr. Thanasis Economou, a senior scientist at the University of Chicago's Enrico Fermi Institute. Economou is the lead researcher on the high rate detector, part of a larger instrument on Cassini called the cosmic dust analyzer. "It will take a few more flybys to distinguish if the dust flux is originating from the E-ring as opposed to a source at Enceladus."

Enceladus is rapidly becoming a very interesting target for Cassini. So much so that scientists and engineers are planning to revise the altitude of the next flyby to get a closer look. Additional Cassini encounters with Enceladus are scheduled for July 14, 2005, and March 12, 2008. The July 14 flyby was to be at an altitude of 1,000 kilometers (620 miles), but the mission team now plans to lower that altitude to about 175 kilometers (109 miles). This will be Cassini's lowest-altitude flyby of any object during its nominal four-year tour.

Earlier this year Cassini completed two flybys of Enceladus. On February 17, Cassini encountered Enceladus at an altitude of 1,167 kilometers (725 miles). On that date, the cosmic dust analyzer with its high rate detector recorded thousands of particle hits during a period of 38 minutes. Cassini executed another flyby of Enceladus on March 9 at an altitude of 500 kilometers (310 miles). "Again we observed a stream of dust particles," said Economou. The largest particles detected measure no more than the diameter of a human hair -- too small to pose any danger to Cassini.

Scientists have speculated that Enceladus is the source of Saturn's E ring, the planet's widest, stretching 302,557 kilometers (188,000 miles). It's possible, the scientists say, that tidal interactions between Enceladus and Mimas, two other moons of Saturn, have heated Enceladus' interior causing water volcanism.

"These measurements are extremely important in order to understand the role of Enceladus as the source of the water ice particles in the E ring," said Dr. Ralf Srama, of the Max Planck Institute for Nuclear Physics, Heidelberg, Germany. Srama is principal investigator of the cosmic dust analyzer science team. This study requires precise measurements of dust densities near the Enceladus region, "but without the high rate detector this would not be possible," said Srama.

Another of Cassini's instruments, the magnetometer, recently discovered water ions which could be part of a very thin atmosphere around Enceladus. Enceladus is a relatively small moon. The amount of gravity it exerts is not enough to hold an atmosphere very long. Therefore a strong, continuous source is required to maintain the atmosphere.

Enceladus measures 500 kilometers (310 miles) in diameter and reflects nearly 100 percent of the light that hits its ice- covered surface. It orbits Saturn at a distance of approximately 237,378 kilometers (147,500 miles), about two-thirds the distance from Earth to the Moon.

The cosmic dust analyzer provides direct observations of small ice or dust particles in the Saturn system in order to investigate their physical, chemical and dynamical properties. It is made up of two detectors. The University of Chicago built the high rate detector, which made these observations. With further analysis, the cosmic dust analyzer might be able to determine whether the particles are made of ice or dust.

Source: NASA

Explore further: Heavy metal frost? A new look at a Venusian mystery

add to favorites email to friend print save as pdf

Related Stories

How Titan's haze help us understand life's origins

Aug 25, 2014

Where did life on Earth come from? There are several theories as to what might have happened. Maybe comets came bearing organic material, or life was transported from another planet such as Mars, or something ...

Cassini to probe Rhea for clues to Saturn rings

Jan 11, 2011

(PhysOrg.com) -- Saturn's icy moon Rhea might seem a strange place to look for clues to understanding the vast majestic rings encircling Saturn. But that's what NASA's Cassini spacecraft plans to do on its ...

The importance of plumes

Apr 18, 2014

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Recommended for you

NASA Webb's heart survives deep freeze test

2 hours ago

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, ...

Big black holes can block new stars

9 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

MAVEN studies passing comet and its effects

9 hours ago

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

User comments : 0