To Mars and Beyond: Plasma Rocket Research

Jul 15, 2004

With their main objective to develop a rocket for a manned mission to Mars, UH Professor Edgar Bering and his student, Michael Brukardt, were among the authors of an award-winning technical paper recognized at a recent conference in Portland, Ore.

The paper presents results of research in which Bering and Brukardt are participating at NASA Johnson Space Center surrounding the Variable Specific Impulse Magnetoplasma Rocket (VASIMR), which is a prototype spacecraft electric propulsion system intended for large high-power missions to Mars and beyond. While the main goal for VASIMR is for manned Mars missions, it also can be used for big robotic missions and be put to civilian use in commercial passenger spacecraft.

"Our device is a prototype for the midcourse sustainer engines for this type mission," Bering said. "VASIMR is a plasma rocket as opposed to an ion engine. That means it uses a neutral but ionized gas as propellant. Ion engines generate thrust with a charged stream of positive ions."

A high-power, radio frequency driven magnetoplasma rocket, VASIMR's physics and engineering have been under study since 1980. The multifaceted research surrounding it involves theory, experimentation, engineering design, mission analysis and technology development. The paper reviewed the plasma diagnostic results obtained from 2002 to 2004 in a continuing series of performance optimization and design development studies, as well as outlined a plan and strategies for continued research.

Titled "Velocity Phase Space Studies of Ion Dynamics in the VASIMR Engine," the paper was named the 2004 American Institute of Aeronautics and Astronautics (AIAA) Best Paper for its technical and scientific excellence by the AIAA Plasmadynamics and Lasers Technical Committee. Held in conjunction with the recent AIAA Fluid Dynamics Conference, the award ceremony honored Bering, a professor of physics and electrical and computer engineering, and Brukardt, a research assistant in physics, both at the University of Houston; Franklin Chang-Diaz, Jared Squire and Tim Glover, all of NASA Johnson Space Center; and Roger Bengtson, physics professor, from the University of Texas at Austin.

Source: University of Houston

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

In pursuit of the perfectly animated cloud of smoke

Mar 12, 2015

Simulations of impressive landscapes and alien creatures have become commonplace, especially in fantasy and science fiction films. But simulations are also appearing in ever more medical and engineering applications. ...

Caltech rocket experiment finds surprising cosmic light

Nov 06, 2014

Using an experiment carried into space on a NASA suborbital rocket, astronomers at Caltech and their colleagues have detected a diffuse cosmic glow that appears to represent more light than that produced ...

Supersonic laser-propelled rockets

Oct 29, 2014

Scientists and science fiction writers alike have dreamt of aircrafts that are propelled by beams of light rather than conventional fuels. Now, a new method for improving the thrust generated by such laser-propulsion ...

The case for a mission to Mars' moon Phobos

Oct 02, 2014

Ask any space enthusiast, and almost anyone will say humankind's ultimate destination is Mars. But NASA is currently gearing up to go to an asteroid. While the space agency says its Asteroid Initiative will ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.