Using Carbon Nanotubes For Quantum Computing

Jul 15, 2004

The computing community for many years has longed to be able to to carry out high speed calculations using a genuine Quantum Computer because it would facilitate the practical factorisation of very large numbers and the searching of unordered lists and databases. The rapid breaking of secure codes based on prime numbers would have a lot of practical applications particularly in the banking and military field and would necessitate the development of new cryptographic and security methods to protect valuable data.

Academics working in the Department of Material Science at the University of Oxford have successfully developed a design protocol for inserting filled molecules of Buckminsterfullerene (“Buckyballs”) into carbon, and other types of nanotube. The Buckyballs are themselves filled with molecules that have either an electronic or structural property which can be used to represent the quantum bit (Qubit) of information, and which can be associated with other adjacent Qubits. The improved stability of the system now allows several thousand operations to be executed before quantum interference occurs (“decoherence”). Intensive collaborative work is continuing in order to develop the protocol into a working computer.

Source: Isis Innovation Ltd

Explore further: Existence of two-dimensional nanomaterial silicene questioned

add to favorites email to friend print save as pdf

Related Stories

Change of perspective in the electronic landscape

Jun 03, 2014

Time and again, even simple materials take physicists by surprise. Researchers at the Max Planck Institute for Chemical Physics of Solids in Dresden have observed an electronic property in the metal bismuth ...

Atoms and molecules on the same wavelength

May 13, 2014

(Phys.org) —It may be surprising, but in physics the terrain of atoms and the territory of organic molecules are worlds apart. Therefore, in order to have a molecule communicate optically with atoms, the ...

Carbon dioxide paves the way to unique nanomaterials

Jan 23, 2014

In common perception, carbon dioxide is just a greenhouse gas, one of the major environmental problems of mankind. For Warsaw chemists CO2 became, however, something else: a key element of reactions allowing ...

DNA helicity and elasticity explained on the nanoscale

Dec 05, 2013

A simple mechanical model to effectively implement the well-known double-stranded structure and the elasticity of DNA on a nano-meter scale has been developed by Jae-Hyung Jeon and Wokyung Sung of Pohang ...

Determining the quantum geometry of a crystal

Nov 07, 2013

Geometrical phases occur in many places in nature. One of the simplest examples is the Foucault pendulum: a tall pendulum free to swing in any vertical plane. Due to the earth rotation, the actual plane of ...

Recommended for you

Graphene surfaces on photonic racetracks

5 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

6 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

7 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0