GE made carbon nanotube-based diode only 10 atoms wide, capable both to emit and detect light

Jul 15, 2004

GE Global Research, the centralised research organisation of the General Electric Company, announced the development of the world’s best performing diode built from a carbon nanotube, which will enable smaller and faster electronic devices with increased functionality. The nano-diode is one of the smallest functioning devices ever made.

The company announced its nanotechnology breakthrough as a cover story for "Applied Physics Letters." Unlike traditional diodes, GE's carbon nanotube device has the ability for multiple functions -- as a diode and two different types of transistors -- which should enable it to both emit and detect light.

“Just as silicon transistors replaced old vacuum tube technology and enabled the electronic age, carbon nanotube devices could open a new era of electronics,” said Margaret Blohm, GE’s advanced technology leader for nanotechnology. “We are excited about this breakthrough and we're eager to start developing new applications for the GE businesses.”

GE’s breakthrough device comes very close to the theoretical limits of performance. Measured through the ideal diode equation, developed by Nobel Laureate William Shockley, GE's new diode has an “ideality factor” very close to one, which is the best possible performance for a diode.

One possible application for GE is to use the device to build the next generation of advanced sensors that will have unsurpassed levels of sensitivity. For example, next generation sensors in security applications could detect potential terrorist threats from chemical and biological hazards, even if they are present in extremely small quantities. This would enable enhanced security at airports, office buildings and other public areas.

The carbon nanotube diode was developed by Dr. Ji-Ung Lee, a scientist who works in the Nanotechnology Advanced Technology Program at the GE Global Research Center in Niskayuna, N.Y. More research is underway to enhance the carbon nanotube diode and increase the yield in the manufacturing process, but GE nanotechnology researchers believe this breakthrough could enable a range of important new applications in computing, communications, power electronics, and sensors.

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

The latest fashion: Graphene edges can be tailor-made

2 hours ago

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Infrared imaging technique operates at high temperatures

2 hours ago

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

23 hours ago

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

23 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.