Fishing up chromosomes

Apr 23, 2005

Researchers at the University of Dundee have made a significant new discovery on how cells behave and protect themselves against cancers and congenital disorders as reported in Nature on April 21.
Dr Tomo Tanaka and his team members at the University's School of Life Sciences, Drs Kozo Tanaka, Naomi Mukae and Hilary Dewar, in collaboration with Drs Euan James and Alan Prescott and researchers in Germany, have uncovered how cells prepare for the process of chromosome separation.

All human cells, except eggs and sperms, contain 46 chromosomes, all of which carry vital genetic information. Because genetic information is crucial for the proper function of cells for the organs and tissues that they organise, all chromosomes must be precisely copied and separated into two cells, known as the daughter cells, during each cell division. Otherwise cells would die, become transformed into cancer cells, or cause congenital diseases such as Down's syndrome.

Cells regulate chromosome separation by a network of threads called microtubules. To prepare chromosome separation, the microtubule network must first capture chromosomes. However, how microtubules capture chromosomes has until now been a complete mystery. By visualizing this step in live cells, the research team has successfully analysed the crucial but so-far concealed process.

Dr Tomo Tanaka says "We can liken chromosomes to big fishes that must be caught. To catch the fishes, cells are equipped with sophisticated fishing lines that are called microtubules. Our study discovered which parts of 'fishes' are hooked up on the 'fishing line' and how 'fishes' are pulled in using the 'fishing line'. Very interestingly, the strength of the 'fishing line' is enhanced only when 'fishes' are caught on the line. We discovered how cells make this happen. I do not think any grand master of fishing can beat cells in our body, whose 'fishing lines' or microtubules are never broken when they pull gigantic 'fishes' out of water."

The research team believes that this is one of the most crucial steps on how cells assure their chromosome inheritance during their divisions to prevent cell death, cancers and other diseases. The team is currently trying to discover what 'baits' are used to attract 'big fishes' towards 'fishing lines'.

Dr Tomo Tanaka is a Wellcome Trust Career Development Fellow and Principal Investigator in the Division of Gene Regulation and Expression based in the Wellcome Trust Biocentre at the University of Dundee’s School of Life Sciences. The research is funded by The Wellcome Trust and Cancer Research UK.

Source: University of Dundee

Explore further: Deciding on a purchase: Does it matter if you look up or down while shopping?

add to favorites email to friend print save as pdf

Related Stories

Fish prone to melanoma get DNA decoded

Apr 15, 2013

Scientists at Washington University School of Medicine in St. Louis and elsewhere have decoded the genome of the platyfish, a cousin of the guppy and a popular choice for home aquariums. Among scientists, ...

Sex, genes, the Y chromosome and the future of men

Nov 14, 2014

The Y chromosome, that little chain of genes that determines the sex of humans, is not as tough as you might think. In fact, if we look at the Y chromosome over the course of our evolution we've seen it shrink ...

Recommended for you

Professor analyzes role of trade sanctions against Iran

7 hours ago

Israeli Prime Minister Benjamin Netanyahu addressed Congress on Tuesday as about 50 Democratic lawmakers threatened to boycott the address, offering the latest and one of the most clear microcosms of the debate about Iran's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.