Five giant impact basins reveal the ancient equator of Mars

Apr 18, 2005

Since the time billions of years ago when Mars was formed, it has never been a spherically symmetric planet, nor is it composed of similar materials throughout, say scientists who have studied the planet. Since its formation, it has changed its shape, for example, through the development of the Tharsis bulge, an eight kilometer [five mile] high feature that covers one-sixth of the Martian surface, and through volcanic activity. As a result of these and other factors, its polar axis has not been stable relative to surface features and is known to have wandered through the eons as Mars rotated around it and revolved around the Sun.

Now, a Canadian researcher has calculated the location of Mars' ancient poles, based upon the location of five giant impact basins on the planet's surface. Jafar Arkani-Hamed of McGill University in Montreal, Quebec, has determined that these five basins, named Argyre, Hellas, Isidis, Thaumasia, and Utopia, all lie along the arc of a great circle. This suggests that the projectiles that caused the basins originated with a single source and that the impacts trace the Martian equator at the time of impact, which was prior to the development of the Tharsis bulge, he says.

Writing in the Journal of Geophysical Research (Planets), Arkani-Hamed calculates that the source of the five projectiles was an asteroid that had been circling the Sun in the same plane as Mars and most of the other planets. At one point, it passed close to the planet, until the force of Martian gravity surpassed the tensile strength of the asteroid, at which point it fragmented. The five large fragments would have remained in the same plane, that of Mars' then-equator. They hit in different spots around the Martian globe, due to Mars' rotation on its then-axis and the differing lengths of time the fragments took before impacting on Mars.

Arkani-Hamed describes the locations of the resulting basins, only three of which are well preserved. The two others have been detected by analysis of Martian gravitational anomalies. The great circle they describe on the Martian surface has its center at latitude -30 and longitude 175. By realigning the map of Mars with that spot as the south pole, the great circle marks the ancient equator.

Arkani-Hamed estimates that the mass of the asteroid captured by Mars was about one percent of that of Earth's Moon. Its diameter was in the range of 800 to 1,000 kilometers [500 to 600 miles], depending upon its density, which cannot be determined.

The significance of Arkani-Hamed's findings, if borne out by further research, is that the extent of presumed underground water on Mars would have to be reassessed. "The region near the present equator was at the pole when running water most likely existed," he said in a statement. "As surface water diminished, the polar caps remained the main source of water that most likely penetrated to deeper strata and has remained as permafrost, underlain by a thick groundwater reservoir. This is important for future manned missions to Mars."

Source: American Geophysical Union

Explore further: Space sex geckos at risk as Russia loses control of satellite

add to favorites email to friend print save as pdf

Related Stories

Red planet pictures show Mars in the eyes of the rovers

Jul 15, 2014

Fancy a little Mars in your daily life? You need go no further than the excellent raw image archive that NASA generously provides on its website, showing the view from the Opportunity and Curiosity rovers ...

Forces of martian nature

Jul 11, 2014

The surface of Mars is pocked and scarred with giant impact craters and rocky ridges, as shown in this new image from ESA's Mars Express that borders the giant Hellas basin in the planet's southern hemisphere.The ...

NASA radio delivered for Europe's 2016 Mars orbiter

Jul 08, 2014

(Phys.org) —The first of two NASA Electra radios that will fly aboard the European Space Agency's next mission to Mars has been delivered for installation onto the ESA ExoMars Trace Gas Orbiter (TGO).

Recommended for you

Satellite galaxies put astronomers in a spin

18 hours ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

18 hours ago

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

User comments : 0