Novel Ion Optics Design Ensures High Sensitivity And Mass Resolution For 3D Atom Probe

Apr 15, 2005

The combination of the high mass-resolution reflectron lens and a patented, three pair delay line detector brings exceptional sensitivity to the 3-Dimensional Atom Probe (3DAP) from Oxford nanoScience Ltd. This unique combination brings the best atom probe mass resolution available commercially both at the conventionally quoted Full Width at Tenth Maximum (FWTM) and the much more challenging Full Width Thousandth Maximum (FW0.1%M). This makes the instrument particularly well suited to the detection of small quantities of dopant materials. In addition, unlike other commercially available detectors, up to 98.5% of the detected atoms are both spatially located and chemically identified.

The large-acceptance-angle reflectron lens is an ion mirror which uses an electrostatic field to reflect ions towards detector. This configuration gives outstanding mass resolution and brings new standards to signal measurement for 3-Dimensional Atom Probe instruments.

Mass resolution figures (M/DM) of 350 can be achieved at the conventionally quoted FWTM. Good resolution figures at the much more demanding FW0.1%M are a much better indicator of extremely narrow peaks without trailing edges. The use of the reflectron lens allows resolution figures of around 100 to be quoted at FW0.1%M. Specifying resolution figures much closer to the spectral baseline indicates the ability to identify small peaks adjacent to major peaks that are several orders of magnitude higher.

The extremely narrow peaks produced and high signal-to-noise ratio allow accurate chemical analysis of complex alloys, where elemental peaks may be closely spaced in the mass spectrum and where some elements may only be present at low percentage levels.

Chemical identification and spatial location of a high proportion of detected atoms is of critical importance in determining the precision of measurements of low dopant concentrations where the detection of high levels of atoms are essential to guarantee low standard deviations on the measurements. In addition, overall sensitivity is a function of both the mass resolution and number of atoms counted.

The patented delay line detector features three pairs of low resistance wires wound around a hexagonal support. The three sets of delay lines allow discrimination of multiple ions arriving at the same time at the detector.

Explore further: Molecular beacons shine light on how cells 'crawl'

add to favorites email to friend print save as pdf

Related Stories

Microsoft beefs up security protection in Windows 10

2 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

US official: Auto safety agency under review

15 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Out-of-patience investors sell off Amazon

15 hours ago

Amazon has long acted like an ideal customer on its own website: a freewheeling big spender with no worries about balancing a checkbook. Investors confident in founder and CEO Jeff Bezos' invest-and-expand ...

Ebola.com domain sold for big payout

15 hours ago

The owners of the website Ebola.com have scored a big payday with the outbreak of the epidemic, selling the domain for more than $200,000 in cash and stock.

Recommended for you

Molecular beacons shine light on how cells 'crawl'

23 hours ago

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

User comments : 0