Signatures of the first stars

Apr 15, 2005

A primitive star with extremely low iron content has been discovered by an international research team from Sweden, Japan, Germany, USA, Australia and Great Britain. This indicates the original composition of the gas from which the star formed had low iron content. The results are published in Nature online this week.

In 2001, the giant star HE0107-5240 was discovered among a large number of stars examined as part of the Hamburg/ESO* survey. Detailed studies revealed that the star had by far the lowest iron content ever recorded - 200 000 times lower than the Sun. Previously, only stars with iron contents up to 10 000 times lower than the solar value were known. Recently, a second star was discovered with similar iron content, designated HE1327-2326.

"These two stars are the most chemically primitive stars known, and therefore provide information on the nature of the first objects that formed in the Universe after the Big Bang," Paul Barklem from Uppsala university, Sweden, says.

Notably, HE1327-2326 is not a giant but a dwarf or sub-giant star, meaning that it is comparatively unevolved. The abundance of some chemical elements in evolved giant stars may have been altered by processes occurring during the star's evolution; however, in an unevolved dwarf or sub-giant star we expect that the chemical composition is close to the original composition of the gas from which the star formed.

Analysis of the spectra for both stars, obtained with the world's largest telescopes, allows the chemical composition of each star to be determined. The stars' chemical abundances show similarities, such as large abundances of carbon and nitrogen, which suggest that these two stars may have formed in a similar way. The detailed interpretation of the chemical signatures of these two stars, and similar stars for which we continue to search, should help us to understand exactly how the first generations of stars were formed, and which elements were produced when they ended their lives in supernova explosions.

Source: Swedish Research Council

Explore further: Europe hoists first navigation satellites post mislaunch

add to favorites email to friend print save as pdf

Related Stories

Milky Way's center unveils supernova 'dust factory'

Mar 19, 2015

Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations - using an infrared telescope aboard a modified Boeing 747 - of cosmic building-block dust resulting ...

"Mini supernova" explosion could have big impact

Mar 16, 2015

In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and ...

Image: The twisted shockwaves of an exploded star

Mar 09, 2015

Discovered on 5 September 1784 by astronomer William Herschel, the Veil Nebula was once a star. Now it is a twisted mass of shock waves that appears six times larger than the full Moon in the sky.

What is Mars made of?

Feb 26, 2015

For thousands of years, human beings have stared up at the sky and wondered about the Red Planet. Easily seen from Earth with the naked eye, ancient astronomers have charted its course across the heavens ...

Recommended for you

More evidence for groundwater on Mars

8 hours ago

Monica Pondrelli and colleagues investigated the Equatorial Layered Deposits (ELDs) of Arabia Terra in Firsoff crater area, Mars, to understand their formation and potential habitability. On the plateau, ...

Is the universe finite or infinite?

10 hours ago

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.