Physicists demonstrate quantum mechanical nature of heat flow

Apr 15, 2005

One of the hallmarks of quantum mechanics -- the laws of physics that apply on very small scales -- is the wave nature exhibited by sub-atomic particles such as electrons. An electron presented with two paths to a destination will use its wave nature to traverse both paths and, depending on the parameters of the two paths, will constructively or destructively interfere with itself at its destination, leading to a high or low probability of it appearing there.

A classic demonstration of this is the Aharonov-Bohm effect where electrons are sent along two paths that may be altered by the application of an external magnetic field. By tuning the magnetic field, the constructive or destructive interference of the electrons is manifested as an increase or decrease in the conduction of electric current. Now physicists at Northwestern University show that, using the fact that electrons carry heat as well as charge, the conduction of heat may be similarly tuned. Their findings will be published April 22 by Physical Review Letters, the journal of the American Physical Society.

Venkat Chandrasekhar, professor of physics in Northwestern's Weinberg College of Arts and Sciences, and his graduate student Zhigang Jiang showed that a magnetic field can be used to increase or decrease the flow of heat through an "Andreev interferometer," a nanoscale device with one normal metal path and one superconducting path. Though the quantum interference of electrons in this device is responsible for these changes in heat flow, the flow of charge through the interferometer is zero. The researchers recently observed this effect experimentally.

Source: Northwestern University

Explore further: Nanoparticles that deliver oligonucleotide drugs into cells described

add to favorites email to friend print save as pdf

Related Stories

What is heat conduction?

Dec 09, 2014

Heat is an interesting form of energy. Not only does it sustain life, make us comfortable and help us prepare our food, but understanding its properties is key to many fields of scientific research. For example, ...

FOXSI to observe X-rays from Sun

Dec 08, 2014

An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits. ...

New material makes water and oil roll off

Nov 28, 2014

Car finish, to which no dirt particles adhere, house fronts, from which graffiti paints roll off, and shoes that remain clean on muddy paths – the material "fluoropore" might make all this possible. Both ...

Recommended for you

Researchers use oxides to flip graphene conductivity

11 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Engineering self-assembling amyloid fibers

13 hours ago

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

Nanoshuttle wear and tear: It's the mileage, not the age

17 hours ago

As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.