Mystery Climate Mechanism May Counteract Global Warming

Apr 12, 2005

A new study by two physicists at the University of Rochester suggests there is a mechanism at work in the Earth’s atmosphere that may blunt the influence of global warming, and that this mechanism is not accounted for in the computer models scientists currently use to predict the future of the world’s temperature. The researchers, David H. Douglass and Robert S. Knox, professors of physics, plotted data from satellite measurements of the Earth’s atmosphere in the months and years following the volcanic eruption of Mount Pinatubo in 1991. The results, published in an upcoming issue of Geophysical Research Letters (and now online), show that global temperatures dropped more and rebounded to normal significantly faster than conventional climate models could have predicted.

“All we did was chart the data,” says Douglass. “We can be confident that our numbers are accurate because we aren’t using computer models and assumptions; we’re using simple observations. Despite whatever models might say, the analysis of the actual data says that the atmosphere rebounded from the Pinatubo volcano much faster than was expected.” In addition, the analysis of Douglass and Knox showed that the amount of the cooling measured could be explained only if there was some mechanism producing a kind of self-correcting feedback. In other words according to Douglass “ This feedback mechanism prevented the Earth from becoming much colder.”

In an attempt to approach the climate warming issue from a data-centered, rather than model-centered, way, Douglass and Knox looked for a global temperature-changing event that was well-recorded and did not occur at the same time as other events, such as El Nino or particularly high solar activity. They found their candidate in the Mount Pinatubo eruption in the Philippines, the largest volcanic eruption in the 20th century. The volcano forced millions of tons of debris into the Earth’s atmosphere, which blocked some of the Sun’s heat from reaching the Earth. The average temperature of the world dropped more than half a degree immediately following the eruption.

The Rochester team zeroed in on the years during and after the eruption, and extracted satellite temperature data to carefully plot the rate at which the atmosphere rebounded to its pre-volcanic temperature. Within a single year, the global temperature was already rebounding, and within roughly five years, it was back to normal.

When conventional atmosphere models were used to predict the rebound, they suggested that the rebound would have been much slower, taking many years to finally reach equilibrium.

“This return to normal temperatures is important because some climate models say that volcanoes affect the global climate for much longer, and that would mean they would have a cumulative effect, where each cools the atmosphere a little more,” says Douglass. “This is used as a justification to say that volcanoes are helping to mask the effects of human pollution. But if volcanoes’ effects last only a few years, then there is no accumulated cooling, and we can’t say they’re masking anything.”

Douglass and Knox point out that the mechanism producing the negative feedback may be the “Infrared Iris effect” due to clouds proposed by MIT professor Richard Lindzen. Clouds can both cool the Earth by reflecting light from the Sun, and warm the Earth by trapping heat between them and the ground. Since cloud formation is influenced by temperature and humidity changes in the atmosphere, the team suspects that clouds may form and dissipate in a way that tends to push the global temperatures back to steady normal.

Since the explanation of Pinatubo by the computer models was wrong in regard to the response time and the negative feedback, Douglass asks, “Are the computer models right when they consider the change to the climate caused by carbon dioxide?”

Explore further: Planet 'reared' by four parent stars

add to favorites email to friend print save as pdf

Related Stories

Spacewalking astronauts finish extensive, trick cable job

9 hours ago

(AP)—Spacewalking astronauts successfully completed a three-day cable job outside the International Space Station on Sunday, routing several-hundred feet of power and data lines for new crew capsules commissioned ...

IOC defends Rio legacy amid green protests

11 hours ago

Ecological protests on Saturday dogged the final day of an International Olympic Committee executive board meeting in Rio as green campaigners slated the choice of a nature reserve to hold the golf event ...

Recommended for you

Planet 'reared' by four parent stars

11 hours ago

Growing up as a planet with more than one parent star has its challenges. Though the planets in our solar system circle just one star—our sun—other more distant planets, called exoplanets, can be reared ...

Image: Training for Sentinel-2A launch

Mar 04, 2015

On 25 February, the Sentinel-2A Mission Control Team at ESOC, ESA's mission operations centre, Darmstadt, Germany, commenced simulation training for the critical launch and early orbit phase.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

toyo
not rated yet Aug 22, 2009
Douglass's question is surely rhetorical, he has answered it with his research. However too many egos are involved, and too much money, to make a difference. The "Global warming = human CO2" bandwaggon now has a life of its own, and has achieved religious belief status.
Show me a LOCAL WEATHER model that can predict reliably for more than 3 days! A GLOBAL prediction over YEARS?? HAH!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.