Got NOx?

Mar 18, 2005

Pacific Northwest National Laboratory researchers have developed a new cost effective and energy efficient method for reducing oxides of nitrogen, or NOx, in diesel engine emissions. Called the reformer assisted catalysis, the process is three-fold -- "syngas" production, reductant synthesis and catalytic reduction of NOx in emissions.

Though they are the dominant choice in commercial trucks and heavy equipment, diesel engines are burdened with significant NOx emissions, which can affect breathing, visibility, vegetation growth, metals, fabrics and dyes.

In the most recent data collected by the U.S. Bureau of Transportation, national NOx emissions in 2001 were more than 22 million tons. As regulatory requirements on exhaust emissions become more stringent, reduction of nasty pollutants has become a high priority in automotive and other commercial industries.

PNNL began to work on this problem more than 10 years ago. Researchers developed a plasma facilitated catalyst, but recognized that a more energy- and cost-efficient system could be built, leading to the development of the reformer assisted catalysis.

The process includes treating hydrocarbon in a reformer before being introduced into the exhaust; diesel is then extracted from the fuel tank and reformed into syngas, a mixture of hydrogen and carbon monoxide.

Next, the mixture is chemically converted to dimethyl ether, which has proved to be highly selective for NOx reduction, from the syngas stream.

In the final step, catalysis, the ether mixture is injected into the exhaust, enhancing the performance of certain catalysts that allow for significant NOx reduction. Researchers took advantage of the earlier plasma catalysis system that offered changing the chemistry of the fuel to generate a better catalysis. They changed the process slightly to retain the oxygenated fuel in the exhaust, making it more cost and energy efficient.

Researchers plan to test the process on a small engine late this year.

Source: PNNL

Explore further: Unique entry complex discovered at Herodian Hilltop Palace

add to favorites email to friend print save as pdf

Related Stories

What commercial aircraft will look like in 2050

Nov 07, 2014

The aircraft industry is expecting a seven-fold increase in air traffic by 2050, and a four-fold increase in greenhouse gas emissions unless fundamental changes are made. But just how "fundamental" will those ...

First-of-a-kind supercritical CO2 turbine

Oct 20, 2014

Toshiba Corporation today announced that it will supply a first-of-a-kind supercritical CO2 turbine to a demonstration plant being built in Texas, USA. The plant will be developed by NET Power, LLC, a U.S. venture, together w ...

Scientists discover gold's hidden value

Jun 20, 2014

(Phys.org) —Scientists from Cardiff are discovering new and unexpected uses for gold – a noble metal traditionally regarded as being chemically uninteresting due to its poor ability to react with other ...

Recommended for you

Ancient clay seals may shed light on biblical era

Dec 20, 2014

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Digging up the 'Spanish Vikings'

Dec 19, 2014

The fearsome reputation of the Vikings has made them the subject of countless exhibitions, books and films - however, surprisingly little is known about their more southerly exploits in Spain.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.