Quantum dot-based assays to offer new ways to understand cell biology

Jul 07, 2004

Evident Technologies and Upstate announced that they have signed an agreement to produce quantum dot-based products for the life science industry under an agreement signed today. Terms and conditions of the agreement have not been disclosed.

Upstate, the leader in innovative cell signaling products for life science research and drug discovery, will be using EviTags, Evident's proprietary fluorescent nanocrystals to produce new forms of quantum dot-based conjugates offering increased photo-stability and multicolor fluorescence. EviTags are available in wavelengths from blue through the visible spectrum and into the near infrared. Evident is a pioneer in the development of advanced nanomaterials and a leading commercial source for a wide range of quantum dot material systems.

“We are excited by the prospect of EviTags and are pleased to be working with this new form of quantum dot nanobiotechnology. We believe that EviTags offer many advantages to understanding
cells that will be very important for our research and biotech industry customers,” said Sheridan G.
Snyder, Chairman and CEO of Upstate. “Evident Technologies' new quantum dot technology, combined with our cell signaling capabilities may lead to many new ways to conduct cell research.”

“We are looking forward to working with Upstate, the leader in many innovative and advanced cell
signaling products, using our EviTags. Conjugating proteins to quantum dots offer distinct advantages over traditional organic fluorophores, including greatly improved photostability, color multiplexing, and single-source excitation,” said Clinton Ballinger, Ph.D., CEO of Evident Technologies, “With these attributes, researchers can perform more tests, see more detail within cells and the freedom to perform long-term imaging.”

Quantum dot conjugates are the next stage in the evolution of biotechnology research tools and offer improved photostability, single source optical excitation, and a multiplicity of tunable narrow-band emission colors that span the visible and infrared spectrum. With these attributes, researchers can perform more tests, see more details in cells and have freedom to perform long-term imaging.

The original press release can be found here.

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Snapshot of cosmic burst of radio waves

23 hours ago

A strange phenomenon has been observed by astronomers right as it was happening - a 'fast radio burst'. The eruption is described as an extremely short, sharp flash of radio waves from an unknown source in ...

Dawn delivers new image of Ceres

7 hours ago

(Phys.org)—As NASA's Dawn spacecraft closes in on Ceres, new images show the dwarf planet at 27 pixels across, about three times better than the calibration images taken in early December. These are the ...

Battery recipe: Deep-fried graphene pom-poms

8 hours ago

In Korea, the work of materials scientists is making news worldwide this week, following publication of their article, "Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.