Bell Labs Heads Research To Use Nanograss In Advanced Electronic And Photonic Systems

Mar 07, 2005

Lucent Technologies' Bell Labs today announced the launch of a new research project that aims to use nano-textured surfaces to solve the extreme thermal management challenges of advanced electronic and photonic systems. The team will be spearheaded by researchers from Bell Labs’ new research laboratory in Blanchardstown, Dublin, who, in collaboration with three Irish universities and Bell Labs researchers in Murray Hill, N.J., will use "nanograss", a Bell Labs-engineered surface that contains billions of tiny silicon posts, to study the effectiveness of transferring heat from silicon surfaces to liquid coolants.

The results from these experiments could lead to important breakthroughs in cost-effective communications devices and networks. Higher processing speeds from liquid-cooled devices will support more densely packed circuits in communication devices, which could allow communication service providers to operate lower-cost broadband services.

“Key to the success of these collaborations is Bell Labs’ global presence and the free exchange of ideas between facilities and borders,” said Lou Manzione, executive director, Bell Labs Centre in Ireland. “Multi-disciplinary research and development is one of Bell Labs’ greatest strengths and we are pleased to be working with several of Ireland’s most respected universities on this exciting project.”

“Nanograss”, discovered by Bell Labs researchers last year, provides a method to control the behavior of tiny drops of liquid using silicon surfaces that resemble a lawn of evenly cut grass with “blades” that are each only a few nanometers in size -- 30 times thinner than a red blood cell. Each post is covered with a non-stick, water-repellant surface material similar to Teflon, which allows fluids to move across the top of the posts without wetting the surface below. However, if a small amount of electrical current is applied, the droplets will sink down and wet the surface. Researchers at the University of Limerick will use nanograss to study the basic physics of fluid flow and heat transfer in systems across super-hydrophobic surfaces on the nano scale.

Nanograss also increases effective area of a flat silicon surface by a factor of ten, thereby increasing the opportunities to transfer heat from the silicon a liquid. Researchers at Trinity College in Dublin and researchers at the Bell Labs Centre in Ireland will conduct a fundamental study of this phenomenon.

Researchers at the Tyndall Institute of University College Cork will perform advanced modeling and optimization of microchannels, as well as research low cost fabrication processes to ensure that the result is cost-effective for use in low cost or even consumer-grade products.

“True to the mission of Bell Labs’ new research center in Ireland, this strategic collaboration will accelerate the incorporation of fundamental research into the telecommunications supply chain,” said Manzione.

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

NREL driving research on hydrogen fuel cells

Mar 25, 2014

Hydrogen fuel cell electric vehicles (FCEV) were the belles of the ball at recent auto shows in Los Angeles and Tokyo, and researchers at the Energy Department's National Renewable Energy Laboratory (NREL) ...

Scientist pushes boundaries of food sensory research

Mar 20, 2014

Anyone who has ever been lured by the call of a dozen fat- and sugar-laden donuts in the office break room while a healthy container of yogurt looks on helplessly can relate to Susan Duncan's research regarding ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...