Tiny holes offer surprising insights

Mar 04, 2005
Tiny holes offer surprising insights Fig. 1

Researchers from Berlin and Seoul store light in plasmonic crystals

Light can creep through tiny holes in a metal plate, even if those holes are smaller in diameter than the wavelength of light. What’s more, the light is stored for a short period of time on the metal surface, as if the metal were a photonic crystal. The controlled interaction of light with such metal structures could pave the way to unique methods for nanosensing or nanoscale information transfer, write Claus Ropers and colleagues in the forthcoming issue of Physical Review Letters ("Femtosecond light transmission and subradiant damping in plasmonic crystals").

Fig. 1. Experimentally measured time-structure of the electric field of an 11-fs optical pulse incident on a 800-nm period array of 50-nm wide slits in a thin gold film and on the transmitted output pulse.

In their experiments conducted at the Max Born Institute in Berlin, Ropers and colleagues aim an ultrashort laser pulse at a nanostructured metal surface. The initial laser pulse measures 10 femtoseconds. As the light hits the surface, it drives electron oscillations and generates surface-bound electromagnetic waves, known as surface plasmon polaritons.

These surface plasmon polaritons cause an unusually high transmission through sub-wavelength apertures, i.e. the tiny holes, or travel along nanometric waveguides. These phenomena evolve on an extremely short time scale and have so far refrained from any direct time-resolved observation. Now, researchers at the Max-Born-Institute in Berlin, Germany and at Seoul National University in Korea, report on a new experiment to measure the polariton lifetime by tracking amplitude and phase of extremely short, 10-fs laser pulses while they are transmitted through a plasmonic crystal, a periodic array of nanometer-sized slits in a thin metal film (Fig. 1). They find lifetimes reaching up to 300 fs, more than an order of magnitude larger than previously thought.

This surprising finding can be tracked down to the microscopic spatial structure of the plasmon field (Fig. 2), which displays symmetric (cosine-like) and antisymmetric (sine-like) plasmon modes, depending on excitation wavelength. The latter display a strongly reduced overlap with the nanoslit scattering centers, which inhibits the emission of electromagnetic radiation and therefore reduces radiative damping of the plasmon field.

Tiny holes offer surprising insights Fig. 2


Fig. 2. Microscopic spatial structure of the surface plasmon polarition in the near-field of an 800-nm period nanoslit array in a thin gold film at a wavelength corresponding to (left) enhanced superradiant damping and (right) reduced subradiant damping of the plasmon field.

These experiments devise a way to control surface plasmon radiation by tailoring their spatial mode profiles, an important prerequisite for using plasmonic crystals in nanosensing, or waveguiding applications or even as flying qubits in quantum information processing.

Source: Forschungsverbund Berlin e.V. (FVB)
For more information please contact:
Dr. Christoph Lienau
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Str 2A
D-12489 Berlin
Phone: +49-30-6392-1476
Mail: lienau@mbi-berlin.de

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

Two-dimensional metamaterial surface manipulates light

Jan 15, 2015

A single layer of metallic nanostructures has been designed, fabricated and tested by a team of Penn State electrical engineers that can provide exceptional capabilities for manipulating light. This engineered ...

Engineers efficiently 'mix' light at the nanoscale

Nov 13, 2014

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.