CSIRO telescopes help rescue Titan experiment

Feb 15, 2005

CSIRO’s radio telescopes and others in Australia, China, Japan and the USA have revealed how the wind speeds on Saturn’s moon Titan vary with altitude-and have turned a disappointment into a triumph.

As the Huygens probe plummeted through Titan’s atmosphere on 14 January it transmitted a stream of data to its parent Cassini spacecraft. The ground-based radio telescopes ’eavesdropped’ on the probe’s signal. As the probe was buffeted by Titan’s winds, its radio signal was shifted in frequency. These ’Doppler shifts’ have been used to measure the wind speeds.

Another experiment to determine the Doppler shifts, the Cassini/Huygens Doppler Wind Experiment, was going to rely on data transmitted from the probe to Cassini. But the transmitted data was lost because because one of the receivers on Cassini was not properly configured. The data from the telescopes has plugged that gap.

The largest telescopes involved were the NRAO Robert C. Byrd Green Bank Telescope in the USA and CSIRO’s Parkes Radio Telescope in Australia. Thanks to special instruments borrowed from NASA, these telescopes were the first to directly ’see’ the probe’s signal.

The wind on Titan has been found to flow in the direction of Titan’s rotation-west to east-at nearly all altitudes. The winds are weak near the surface and increase slowly with altitude up to about 60 km. The maximum speed of about 430 km/hour was found at an altitude of 120 km. Above 60 km there are large variations in the Doppler measurements, which scientists think were caused by vertical wind shear.

The radio telescope network was coordinated by the Joint Institute for VLBI in Europe, JIVE, and NASA’s Jet Propulsion Laboratory, JPL. JPL and JIVE also made and processed the ground-based Doppler measurements, working with the Doppler Wind Experiment team.

Explore further: Red moon at night; stargazer's delight

add to favorites email to friend print save as pdf

Related Stories

New type of black-hole quasar discovered

Nov 08, 2013

(Phys.org) —Like our Milky Way, every known large galaxy has at its center a supermassive black hole, some of which are surrounded by a super-bright disk of hot gas called a quasar—but now a research ...

90 million laser shots bring wind satellite back on track

Apr 18, 2013

(Phys.org) —Developing new ways of monitoring Earth is always demanding, but ESA's Aeolus mission has faced some particularly difficult technical challenges. However, with the success of intense high-energy ...

Recommended for you

Red moon at night; stargazer's delight

11 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

13 hours ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

16 hours ago

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

User comments : 0

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...