Sensor of plastic can be produced in a printing press

Feb 08, 2005

Electrochemical transistors made of plastic open myriad possibilities. Since both electrons and ions are active, they can function as a bridge between traditional electronics and biological systems. A new dissertation from Linköping University in Sweden describes a simple and inexpensive humidity sensor that can be manufactured in a printing press.

Electrically conducting plastic is used today in field effect transistors, light-emitting diodes, electrochemical components, and batteries. Organic semiconductors are better than silicon because they can be applied to soft surfaces, even paper, using printing technology. What’s more, the components can be recycled in the same way as regular paper and plastic.

In an electrochemical transistor, both electrons and ions serve as charge bearers. It can be used in sensors, analytical tools, logical circuits, and smart displays. The current is controlled by a reduction/oxidation process, which means that it uses low-voltage current, roughly one volt, and is not dependent on small dimensions. Moreover, it has a memory function.

This dissertation by David Nilsson, from the Department of Science and Technology, describes an electrochemical humidity sensor, produced using purely organic materials. Depending on the humidity of the air, the conducting capacity of the electrolyte changes, as does the response from the transistor. The same concept can be used to gauge acidity (pH) or the content of ions and glucose.

The vision is for the sensor, the battery, and the display to be pressed simultaneously on paper or other flexible surfaces. In that way it would be possible to produce cheap electronic “litmus paper” or reaction strips for blood and glucose testing.

Intelligent image units (pixels) are another interesting application of electrochemical transistors. Varying the current alters the color of the display and thereby the content of the image or text. The technology can be used to develop smart labels and advertising signs.

David Nilsson is a member of Professor Magnus Berggren’s research team in organic electronics. In collaboration with the electronics research institute Acreo, the team has developed printing technology for electronics on paper. Recently the Swedish Research Council provided funding for another printing press under the project Electronic Paper Printing House.

Explore further: Ineda developing low power companion processors to increase battery life for wearables

add to favorites email to friend print save as pdf

Related Stories

Molecular engineers record an electron's quantum behavior

Aug 14, 2014

A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique ...

Today's annoyances, tomorrow's technology

Aug 04, 2014

Paper wrinkles, tape tears, cables kink, columns buckle, eggshells break. Pedro M. Reis hopes to transform today's annoyances into tomorrow's technology.

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Recommended for you

What metadata does the government want about you?

2 hours ago

With the leaking of a discussion paper on telecommunications data retention, we are at last starting to get some clarity as to just what metadata the Abbott government is likely to ask telecommunications ...

Augmented reality helps in industrial troubleshooting

2 hours ago

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

User comments : 0