Lasers to give early-warning of volcanic eruptions

Feb 04, 2005

Laser-based instruments could soon become a convenient tool to warn scientists of impending volcanic eruptions according to research reported today on the Institute of Physics website Optics.org. Researchers in Italy have built an optical system for monitoring volcanic gases and have just reported the results of their first field tests. Livio Gianfrani and his colleagues from the Seconda Universita di Napoli constructed a portable spectrometer based around a 2 micron diode laser and used it to perform in-situ measurements of carbon dioxide gas emissions from the nearby Solfatara crater.

"Analysis of the ratio of 13CO 2 to 12CO 2 is of the utmost importance in geochemical monitoring of active volcanic areas," research leader Livio Gianfrani told Optics.org. "A small change in the ratio, on the order of one part per million, can be due to magma movements towards the surface."

Currently, the isotope ratios of volcanic gases are measured by collecting gas samples and sending them to a laboratory for mass spectrometry measurements. Although highly sensitive and reliable, this process means that the results are typically available a few weeks later or longer.

"On the other hand, diode laser spectroscopy is ideally suited to make accurate, in-situ measurements," said Gianfrani. "If simple absorption detection schemes are adopted, such as wavelength modulation spectroscopy, it is possible to implement portable and reliable systems capable of continuous and unattended operation over time periods from days to weeks."

The Naples team performed the gas measurements between July and October 2004 and report an accuracy of better than 0.05% in their ratio results. Their set-up is built on a 60x60 cm breadboard and consists of a room-temperature operated DFB laser diode emitting 3mW at 2.008 microns, a pair of gas cells (the sample and a reference), and a InGaAs photodiode detector. The equipment is controlled by a laptop computer and housed in a protective box that is thermally insulating.

According to Gianfrani one of the big challenges was making a system that was robust enough to stand up to the harsh conditions encountered at the crater.

“A volcanic site can be one of the worst environments on our planet," said Gianfrani. "Instrumentation can be exposed to acid gases, large temperature fluctuations and high humidity." For example, at the Bocca Grande vent on Solfatara the temperature of gases can reach 150 degC and gases such as hydrogen sulphide (H 2S) and methane (CH 4) are present in addition to CO2 and water vapor.

The gases are collected by a flask or a 20m long Teflon tube that directly feeds into the spectrometer sample chamber. A laser then scans the sample 30 times to probe the gas for its 13CO 2 and 12CO 2 absorption lines. A set of 10 measurements takes about 50 minutes."

The team is now thinking of ways to improve its set-up. "We are implementing a new version of the spectrometer based on a new diode laser in conjunction with a long optical absorption path length technique. This will increase the detection sensitivity," said Gianfrani. "We plan to perform isotope ratio measurements in atmospheric CO 2 at molecular densities much lower than those observed in volcanic gases, without any kind of sample treatment.

Source: www.optics.org

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

How to study high-speed flows

Feb 09, 2015

Joanna Austin (MS '98, PhD '03) does not just go with the flow. She picks it apart and analyzes it. One of the newest faculty members in Caltech's Division of Engineering and Applied Science is a gas dynamicist, ...

Understanding the copper heart of volcanoes

Feb 09, 2015

The link between volcanism and the formation of copper ore has been discovered by researchers from the University of Bristol, UK. Their findings, published today in Nature Geoscience, could have far-reaching implic ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.