Caltech Receives $2.5 Million to Further Research in Millimeter-Wave Astronomy

Feb 03, 2005

The California Institute of Technology announces a $2.5 million award from the Gordon and Betty Moore Foundation to support the Combined Array for Research in Millimeter-Wave Astronomy (CARMA).
CARMA will allow significant advances in the areas of astronomy and astrophysics. The combined array will become a frontline instrument for innovative research into the formation of galaxies, stars, planets, and the origins of life.

At the increased level of instrumental sensitivity envisaged, CARMA will allow researchers to "see" almost to the edge of the universe, a few billion years after the Big Bang, and also to search comets, planet-forming disks, and the interstellar medium for chemical clues regarding the formation of complex organic molecules from which life may originate.

CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California.

First light is anticipated this fall and full operation in 2006.

The Moore Foundation grant will be used for relocation of the 15 antennas to Cedar Flat; construction of a control center; antenna pads; associated infrastructure; design and construction of a telescope transporter; development of state-of-the-art electronics and software; and other enhancements to ensure the successful integration into a single system for optimal performance.

Relocation to the Cedar Flat high-elevation site will allow atmospheric transparency that is a factor of two greater than at the existing OVRO Observatory. With the improved atmospheric conditions, more telescopes, and updated electronics, the new facility will have 10 times the sensitivity and imaging speed of the current instruments. Shorter wavelength observations and resulting higher angular resolution will also be increased through the improved atmospheric transmission. With the new array's merged complement of OVRO and BIMA antennas, CARMA's imaging fidelity will be unsurpassed. Its unique ability to provide sensitive observations over a wide range of angular scales will enable scientific research not possible with any other existing instrument.

According to Anneila Sargent, Rosen Professor of Astronomy and director of OVRO and CARMA, "CARMA builds on the pioneering technical and scientific achievements of the OVRO and BIMA arrays over the last 20 years. Millimeter-wave emission from molecular gas and dust has opened a critical window on the formation of stars, planets, and galaxies, and results from these arrays are increasingly intriguing. CARMA, with its improved sensitivity and imaging power, will allow us to make significant advances and to remain at the forefront of astronomical research and discovery."

Sargent continues, "While CARMA will ensure our ability to undertake cutting-edge research, it will also serve a critical role as a university instrument. This new merged array will encourage the exploration of new technologies and techniques and will be a key component in training the next generation of U.S. millimeter-wave radio astronomers."

Sargent concludes, "If someone asks me these days, 'How's your karma?', I tell them, 'My CARMA is good!'"

Explore further: Start of dwarf planet mission delayed after small mix-up

Related Stories

For many US teachers, the classroom is a lonely place

13 hours ago

One of the best ways to find out how teachers can improve their teaching is to ask them. The massive Teaching and Learning International Survey (TALIS) did just that and the answers offer crucial insights for teachers, school ...

Recommended for you

The riddle of galactic thin–thick disk solved

Apr 24, 2015

A long-standing puzzle regarding the nature of disk galaxies has finally been solved by a team of astronomers led by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP), using state-of-the-art ...

Giant cosmic tsunami wakes up comatose galaxies

Apr 24, 2015

Galaxies are often found in clusters, with many 'red and dead' neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.