Caltech Receives $2.5 Million to Further Research in Millimeter-Wave Astronomy

Feb 03, 2005

The California Institute of Technology announces a $2.5 million award from the Gordon and Betty Moore Foundation to support the Combined Array for Research in Millimeter-Wave Astronomy (CARMA).
CARMA will allow significant advances in the areas of astronomy and astrophysics. The combined array will become a frontline instrument for innovative research into the formation of galaxies, stars, planets, and the origins of life.

At the increased level of instrumental sensitivity envisaged, CARMA will allow researchers to "see" almost to the edge of the universe, a few billion years after the Big Bang, and also to search comets, planet-forming disks, and the interstellar medium for chemical clues regarding the formation of complex organic molecules from which life may originate.

CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California.

First light is anticipated this fall and full operation in 2006.

The Moore Foundation grant will be used for relocation of the 15 antennas to Cedar Flat; construction of a control center; antenna pads; associated infrastructure; design and construction of a telescope transporter; development of state-of-the-art electronics and software; and other enhancements to ensure the successful integration into a single system for optimal performance.

Relocation to the Cedar Flat high-elevation site will allow atmospheric transparency that is a factor of two greater than at the existing OVRO Observatory. With the improved atmospheric conditions, more telescopes, and updated electronics, the new facility will have 10 times the sensitivity and imaging speed of the current instruments. Shorter wavelength observations and resulting higher angular resolution will also be increased through the improved atmospheric transmission. With the new array's merged complement of OVRO and BIMA antennas, CARMA's imaging fidelity will be unsurpassed. Its unique ability to provide sensitive observations over a wide range of angular scales will enable scientific research not possible with any other existing instrument.

According to Anneila Sargent, Rosen Professor of Astronomy and director of OVRO and CARMA, "CARMA builds on the pioneering technical and scientific achievements of the OVRO and BIMA arrays over the last 20 years. Millimeter-wave emission from molecular gas and dust has opened a critical window on the formation of stars, planets, and galaxies, and results from these arrays are increasingly intriguing. CARMA, with its improved sensitivity and imaging power, will allow us to make significant advances and to remain at the forefront of astronomical research and discovery."

Sargent continues, "While CARMA will ensure our ability to undertake cutting-edge research, it will also serve a critical role as a university instrument. This new merged array will encourage the exploration of new technologies and techniques and will be a key component in training the next generation of U.S. millimeter-wave radio astronomers."

Sargent concludes, "If someone asks me these days, 'How's your karma?', I tell them, 'My CARMA is good!'"

Explore further: Far from home: Wayward cluster is both tiny and distant

add to favorites email to friend print save as pdf

Related Stories

US sees little severe weather so far in 2015

6 minutes ago

(AP)—While a big chunk of the nation deals with snow and ice, the U.S. is poised to end January and February with the fewest bouts of severe weather in decades.

Boy or girl? Lemur scents have the answer

7 hours ago

Dozens of pregnancy myths claim to predict whether a mom-to-be is carrying a boy or a girl. Some say you can tell by the shape of a woman's bump, or whether she craves salty or sweet.

SOHO sees something new near the sun

9 hours ago

An unusual comet skimmed past the sun on Feb 18-21, 2015, as captured by the European Space Agency (ESA) and NASA's Solar and Heliospheric Observatory, or SOHO.

Recommended for you

Far from home: Wayward cluster is both tiny and distant

3 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

Why don't we search for different life?

8 hours ago

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don't we look for the stuff that's really different?

OSIRIS catches glimpse of Rosetta's shadow

8 hours ago

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. ...

Kamikaze comet loses its head

9 hours ago

Like coins, most comet have both heads and tails. Occasionally, during a close passage of the Sun, a comet's head will be greatly diminished yet still retain a classic cometary outline. Rarely are we left ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.