Molecular Biology Fills Gaps in Knowledge of Bat Evolution

Jan 28, 2005
Bat

One in five mammals living on Earth is a bat, yet their evolutionary history is largely unknown because of a limited fossil record and conflicting or incomplete theories about their origins and divergence.
Now, a research team including University of California, Riverside Biology Professor Mark Springer, has published a paper in the Jan. 28 issue of the journal Science that uses molecular biology and the fossil data to fill in many of the gaps.

Springer coauthors the paper, titled A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record, with William Murphy, Stephen J. O’Brien and Emma. C. Teeling of the National Cancer Institute’s Laboratory of Genomic Diversity, Frederick, MD; Ole Madsen in the Department of Biochemistry at the University of Nijmegen, the Netherlands; and Paul Bates of the Harrison Institute’s Centre for Systematics and Biodiversity Research, Kent, U.K.

“The present work advances our understanding of where bats originated, when they diversified and how different bat families are related to each other,” Springer said. “It also quantifies the fraction of the fossil record that is missing for bats.”

The team, using DNA sequencing, analyzed data from portions of 17 nuclear genes from representatives of all bat families.

Their results support the hypothesis that the group of large fruit-eating bats from the tropics, that fly mostly during the day – known to biologists as megabats – emerged from four major lineages of smaller and more widely dispersed, mostly insect-eating, night-flying bats, known as microbats. These microbats – also known for their highly specialized echolocation – originated about 52 to 50 million years ago during a lush period of significant global warming in a region that is now North America.

This latest research helps fill gaps in the evolutionary history of one of the most diverse group of mammals on earth and the only mammals capable of powered flight. The fossil record alone left bat evolutionary history about 61 percent incomplete, according to Springer. Bats play a major ecological role as plant pollinators and insect predators.

For Springer, this latest research is significant because it shows that molecular information can contribute to resolving and illuminating long-standing problems in evolutionary biology.

The current findings lay the groundwork for further research that, Springer hopes, will expand the coverage of classifications of bats from the family level to the genus level and probe in more detail into the bat evolutionary record. He also plans to compare the completeness of the bat fossil record with that of other mammals.

Source: University of California, Riverside

Explore further: How people respond to a catastrophe on social media

add to favorites email to friend print save as pdf

Related Stories

Bat researchers no longer flying blind on echolocation

Jan 24, 2010

Researchers at The University of Western Ontario led an international and multi-disciplinary study that sheds new light on the way that bats echolocate. With echolocation, animals emit sounds and then listen ...

Sucker-footed fossils broaden the bat map

Feb 04, 2014

Today, Madagascar sucker-footed bats live nowhere outside their island home, but new research shows that hasn't always been the case. The discovery of two extinct relatives in northern Egypt suggests the ...

Recommended for you

How people respond to a catastrophe on social media

7 minutes ago

When an earthquake hits, it makes more than just seismic waves. Extreme events such as earthquakes, tsunamis, and terrorist attacks also produce waves of immediate online social interactions, in the form ...

Making cities more accessible for everyone

17 minutes ago

Ron Buliung's interest in urban design initially started with his travels to Europe and India where he saw how different cities dealt with issues such as space, wealth, poverty, street life, congestion and ...

Scientists show IQs on the rise

1 hour ago

(Phys.org) —Human intelligence is thought to improve with each generation and a unique study of people born and raised in Aberdeen has proved that those in north-east Scotland are getting smarter.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.