Columbia Team Shows How Stratospheric Conditions Affect Weather

Jan 26, 2005
A snapshot of surface temperature in the Northern Hemisphere

Columbia researchers in the Department of Applied Physics and Applied Mathematics in the Fu Foundation School of Engineering and Applied Science (SEAS) are looking toward the upper reaches of the sky to forecast the powerful forces of nature.
The scientists have used a climate model to demonstrate how weather systems and storms may be influenced by disturbances in the stratosphere -- the upper layer of atmosphere 10 to 30 miles above Earth's surface.

Image: This map shows a snapshot of surface temperature in the Northern Hemisphere, with weather systems moving poleward. Columbia researchers have demonstrated that this process is influenced by the presence of a stratospheric jet.

The researchers -- Matthew Wittman, Lorenzo Polvani, Richard Scott and Andrew Charlton -- are part of the Integrative Graduate Education and Research Training (IGERT) joint program in applied mathematics and Earth and environmental sciences, a collaboration of SEAS and the Earth Institute.

Findings from the research were recently published in the American Geophysical Union's journal, Geophysical Research Letters.

"Our research shows that changes to the strength of winds in the stratosphere cause changes to tropospheric weather systems," said lead author Matthew Wittman.

Understanding how the stratosphere affects the troposphere, the lowermost layer of the atmosphere where weather occurs, will help improve seasonal weather forecasts and predictions about the effect of ozone depletion and global warming on our climate. The research is part of the team's ongoing efforts to understand the interaction of the stratosphere and troposphere and improve representation of this interaction in climate models.

"The stratosphere has a longer 'memory' than the troposphere," adds co-author Andrew Charlton. "If you want to make forecasts on a time scale longer than several days, it is useful to understand the mechanisms linking places with longer memories, such as the stratosphere and the oceans to the troposphere."

Each winter, a westerly jet, called the Polar Night Jet, forms in the stratosphere. Winds in this jet circulate around the pole at speeds of up to 100 miles per hour. The strength of the jet changes as part of normal atmospheric variability and possibly also in response to climate change. The authors demonstrate that the presence of stronger westerly jets in the stratosphere causes tropospheric weather systems to track further toward the pole.

Averaging the changes to the paths of weather systems, the team showed, produces a pattern of changes similar in structure to Arctic Oscillation, the dominant pattern of climate variability in the Northern Hemisphere that describes how temperatures across the whole hemisphere vary together.

Source: Columbia University (by Jennifer Freeman)

Explore further: Hubble sees 'ghost light' from dead galaxies

add to favorites email to friend print save as pdf

Related Stories

First eyewitness accounts of mystery volcanic eruption

Sep 18, 2014

New light has been shed on one of the biggest volcanic eruptions in the last 500 years—the so-called 'Unknown eruption'—thanks to an unusual collaboration between a historian and a team of earth scientists at the University ...

Climate change threatens to worsen US ozone pollution

May 05, 2014

Ozone pollution across the continental United States will become far more difficult to keep in check as temperatures rise, according to new research led by the National Center for Atmospheric Research (NCAR). ...

NASA simulation portrays ozone intrusions from aloft

Apr 10, 2014

(Phys.org) —Outdoor enthusiasts in Colorado's Front Range are occasionally rewarded with remarkable visibility brought about by dry, clear air and wind. But it's what people in the mountainous U.S. West ...

Recommended for you

Possible bright supernova lights up spiral galaxy M61

7 hours ago

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible ...

Fifteen years of NASA's Chandra X-ray observatory

8 hours ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

9 hours ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.