DNA molecules used to assemble nanoparticles

Jan 21, 2005
Dendrimer complex docking on cellular folate receptors

University of Michigan researchers have developed a faster, more efficient way to produce a wide variety of nanoparticle drug delivery systems, using DNA molecules to bind the particles together.
Nanometer-scaled dendrimers can be assembled in many configurations by using attached lengths of single-stranded DNA molecules, which naturally bind to other DNA strands in a highly specific fashion.

Image: Dendrimer complex docking on cellular folate receptors (Michigan Center for Biologic Nanotechnology)

"With this approach, you can target a wide variety of molecules---drugs, contrast agents---to almost any cell," said Dr. James R. Baker Jr., the Ruth Dow Doan Professor of Nanotechnology and director of the Center for Biologic Nanotechnology at U-M.

Nanoparticle complexes can be specifically targeted to cancer cells and are small enough to enter a diseased cell, either killing it from within or sending out a signal to identify it. But making the particles is notoriously difficult and time-consuming.

The nanoparticle system used by Baker's lab is based on dendrimers, star-like synthetic polymers that can carry a vast array of molecules on the ends of their arms. It is possible to build a single dendrimer carrying many different kinds of molecules such as contrast agents and drugs, but the synthesis process is long and difficult, requiring months for each new molecule added to the dendrimer in sequential steps. And the yield of useful particles drops with each successive step of synthesis.

For a paper published Jan. 21 in the journal Chemistry and Biology, U-M Biomedical Engineering graduate student Youngseon Choi built nanoparticle clusters of two different functional dendrimers, one designed for imaging and the other for targeting cancer cells. Each of the dendrimers also carried a single-stranded, non-coding DNA synthesized by Choi.

In a solution of two different kinds of single dendrimers, these dangling lengths of DNA, typically 34-66 bases long, found complementary sequences on other dendrimers and knitted together, forming barbell shaped two-dendrimer complexes with folate on one end and fluorescence on the other end.

Folate receptors are over-expressed on the surface of cancer cells, so these dendrimer clusters would tend to flock to the diseased cells. The other end of the complex carries a fluorescent protein so that the researchers can track their movement.

A series of experiments using cell sorters, 3-D microscopes and other tools verified that these dendrimers hit their targets, were admitted into the cells and gave off their signaling light. The self-assembled dendrimer clusters were shown to be well formed and functional.

"This is the proof-of-concept experiment," Choi said. But now that the assembly system has been worked out, other forms of dendrimer clusters are in the works.

"If you wanted to make a therapeutic that targeted five drugs to five different cells, it would be 25 synthesis steps the traditional way," Baker said. At two to three months per synthesis, and a significant loss of yield for each step, that approach just wouldn't be practical.

Instead, the Baker group will create a library of single-functional dendrimers that can be synthesized in parallel, rather than sequentially, and then linked together in many different combinations with the DNA strands.

"So it's like having a shelf full of Tinker Toys," Baker said.

An array of single-functional dendrimers, such as targets, drugs, and contrast agents, and the ability to link them together quickly and easily in many different ways would enable a clinic to offer 25 different "flavors" of dendrimer with only ten synthesis steps, Baker said.

Baker foresees a nanoparticle cluster in which a single dendrimer carries three single-strands of DNA, each with a sequence specific to the DNA attached to other kinds of dendrimers. Put into solution with these other tinker toys, the molecule would self-assemble into a four-dendrimer complex carrying one drug, one target, and one fluorescent.

Source: University of Michigan

Explore further: New analytical technology reveals 'nanomechanical' surface traits

add to favorites email to friend print save as pdf

Related Stories

'Onion' vesicles for drug delivery developed

Jun 10, 2014

One of the defining features of cells is their membranes. Each cell's repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate ...

Danish chemist aims to bring supermolecules to the world

Jan 10, 2013

With applications spanning from non-shrink dental fillings to DNA-drugs the so-called dendrimers are a near magical material. Now a chemist from the University of Copenhagen has vowed to make the weird molecules famous.

Simulated gene therapy

Apr 29, 2009

In a recent issue of The Journal of Chemical Physics, published by the American Institute of Physics (AIP), a group of researchers at the University of California, Berkeley and Los Alamos National Laboratory describe the fi ...

Nanoparticles Deliver Gene Therapy, Killing Tumors

Mar 26, 2009

(PhysOrg.com) -- Given that cancer is ultimately a genetic disease, it has long been the hope of researchers to use gene therapy to attack tumors where they might be most susceptible. Those prospects have taken a significant ...

Lipid Nanoparticles Enhance Antitumor Vaccine Activity

Nov 27, 2006

Positively charged lipid-based nanoparticles are known to trigger strong immune responses when injected into the body, which can be problematic when attempting to use this type of nanoparticle as a drug delivery vehicle. ...

Recommended for you

Graphene reinvents the future

17 hours ago

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0