Thinking small: Texas A&M team creates lab-on-a-chip

Jan 14, 2005

Imagine an entire chemistry laboratory reduced to the size of a postage stamp. It could happen.
While others may think big, Texas A&M University physicists Don Naugle and co-worker Igor Lyuksyutov are thinking small - as in micro small. They have successfully managed to levitate micron-sized fluids using magnets, which could lead to new advances in medicine, chemistry, chemical engineering and other related fields.

By using small magnets on a postage-stamp sized chip, Naugle and Lyuksyutov have managed to move and merge tiny levitating droplets and crystals and to control the orientation of the levitating crystals.

The droplets used were as small as bacteria or 100 times smaller than a human hair, and up to one billion times smaller in volume than has been demonstrated by conventional methods.

Their work was recently published in Applied Physics Letter and featured in several science journals. Their research is funded by The Robert A. Welch Foundation and National Science Foundation grants.

"It might be possible to do the same thing with a large number of fluids, chemicals or even a virus," Naugle explains.

"The Texas A&M team has managed to move and levitate several substances, including alcohol solutions, oils, some types of powders and even red blood cells and bacteria. It could be theoretically possible to reduce an entire chemistry lab to a few postage-stamp sized chips.

"Try to picture individual chemical beakers (droplets) being merged into other chemical beakers. That's the principal involved here."

Naugle calls the method a "lab on a chip" and says the possibilities are exciting.

"The lab-on-a-chip device levitates and manipulates diamagnetic objects, which are very weakly repelled by magnets," he notes.

"These include living tissue and other objects and substances you don't think of as being magnetic."

The new procedures could be applied to other fields, he believes.

"Though it has taken several years to achieve the droplet levitation process, we need to see if we can make progress with manipulating DNA, nanotubes and other things using both magnetic and electric fields. It would be exciting to see if we could precisely transport levitating nanotubes into predefined positions on a silicon chip. This could open up even more doors for future research."

Source: Texas A&M University

Explore further: New research signals big future for quantum radar

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New filter could advance terahertz data transmission

6 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

7 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

8 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

9 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

21 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.