Hubble's Infrared Eyes Home in on Suspected Extrasolar Planet

Jan 10, 2005
Hubble's Infrared Eyes Home in on Suspected Extrasolar Planet

NASA's Hubble Space Telescope (HST) is providing important supporting evidence for the existence of a candidate planetary companion to a relatively bright young brown dwarf star located 225 light-years away in the southern constellation Hydra.

Astronomers at the European Southern Observatory's Very Large Telescope (VLT) in Chile detected the planet candidate in April 2004. They used infrared observations and adaptive optics to sharpen their view. The VLT astronomers spotted a faint companion object to the brown dwarf star 2MASSWJ 1207334-393254 (also known as 2M1207). The object is a candidate planet, because it is only one-hundredth the brightness of the brown dwarf (at the longer-than-Hubble wavelengths observed with the VLT). It glimmers at barely 1800 degrees Fahrenheit, which is cooler than a light bulb filament.

Since an extrasolar planet has never been directly imaged, this remarkable observation required Hubble's unique abilities to do follow-up observations to test and validate if it is indeed a planet. Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) camera conducted complementary observations taken at shorter infrared wavelength observations unobtainable from the ground. This wavelength coverage is important, because it is needed to characterize the object's physical nature.

Very high precision measurements of the relative position between the dwarf and companion were obtained with NICMOS in August 2004. The unique HST follow up observations were compared to the earlier VLT observations to determine if the two objects are really gravitationally bound and hence move across the sky together. Astronomers said they can almost rule out the probability the suspected planet is really a background object, since there was no noticeable change in its position relative to the dwarf.

If the two objects are gravitationally bound, they are at least 5 billion miles apart, about 30 percent farther apart than Pluto and the sun. Given the mass of 2M1207, inferred from its spectrum, the companion object would take a sluggish 2,500 years to complete one orbit. Any relative motion seen between the two on shorter time scales would reveal the candidate planet as a background interloper, not a gravitationally bound planet.

"The NICMOS photometry supports the conjecture the planet candidate is about five times the mass of Jupiter if it indeed orbits the brown dwarf," said Glenn Schneider of the University of Arizona, Tucson. "The NICMOS position measurements, relative to VLT's, indicate the object is a true (and thus orbiting) companion at a 99 percent level of confidence. Further planned Hubble observations are required to eliminate the one percent chance it is a coincidental background object, which is not orbiting the dwarf," he added.

The candidate planet and dwarf are in the nearby TW Hydrae association of young stars estimated to be less than 8 million years old. The HST NICMOS observations found the object to be extremely red and relatively much brighter at longer wavelengths. The colors match theoretical expectations for an approximately 8 million-year-old object that is about five times as massive as Jupiter. Further HST observations by the NICMOS team are planned in April 2005. The HST is a project of international cooperation between NASA and the European Space Agency.

Schneider is presenting these Hubble observations today at the meeting of the American Astronomical Society in San Diego, Calif.

Source: NASA

Explore further: Fermi finds a 'transformer' pulsar

add to favorites email to friend print save as pdf

Related Stories

Asteroid Vesta to reshape theories of planet formation

6 hours ago

EPFL researchers have a better understanding of the asteroid Vesta and its internal structure, thanks to numerical simulations and data from the space mission Dawn. Their findings, published today in Nature, questi ...

Comet ISON's dramatic final hours

2 hours ago

(Phys.org) —A new analysis of data from the ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft has revealed that comet 2012/S1 (ISON) stopped producing dust and gas shortly before it raced past ...

NASA mission to reap bonanza of earth-sized planets

Jul 15, 2014

Set to launch in 2017, NASA's Transiting Exoplanet Survey Satellite (TESS) will monitor more than half a million stars over its two-year mission, with a focus on the smallest, brightest stellar objects.

Testing completed on James Webb Space Telescope backplane

Jul 09, 2014

(Phys.org) —NASA's James Webb Space Telescope has reached another development milestone with the completion of static load testing of its primary mirror backplane support structure (PMBSS) moving the telescope ...

Movement pro transforms actors into apes on film

Jul 07, 2014

Terry Notary is Hollywood's human shape-shifter. In a blink, he can become an elf, an ape or almost any other moving creature. An expert in motion-capture performance, he specializes in bringing non-human ...

Recommended for you

Fermi finds a 'transformer' pulsar

13 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

New launch date set for ISS delivery vessel

14 hours ago

A robot ship will be launched from Kourou, French Guiana, after a five-day delay on July 29 to deliver provisions to the International Space Station, space transport firm Arianespace said Tuesday.

The heart of an astronaut, five years on

16 hours ago

The heart of an astronaut is a much-studied thing. Scientists have analyzed its blood flow, rhythms, atrophy and, through journal studies, even matters of the heart. But for the first time, researchers are ...

User comments : 0