Philips demonstrates BAW filters for System in Package modules for wireless applications

Jun 27, 2004
Sample of a BAW filter shown on top of a mobile-phone displays, showing its small dimensions

In collaboration with Philips' semiconductors division, scientists at Philips Research have developed an innovative new process technology for producing high-performance BAW (Bulk Acoustic Wave) filters on silicon wafers, each filter being housed in a chip-scale package fabricated as an integral part of the wafer processing. Aimed at replacing the SAW (Surface Acoustic Wave) and ceramic devices currently used as antenna filters in mobile phones, BAW filters fabricated in this new technology offer high performance coupled with smaller physical size. They therefore represent a critical step in reducing the footprint of RF modules so that more functionality can be squeezed into next-generation wireless products.

As more and more communications systems start to use frequency bands in the 800 MHz to 10 GHz range, antenna filters have become increasingly important in preventing one system from interfering with another system that uses close frequency bands. These filters therefore need to have bandpass characteristics that accurately match a particular system's range of carrier frequencies, together with the ability to handle the maximum RF power levels transmitted by mobiles. Compared to SAW filters, BAW filters have considerably better power handling capabilities and better temperature coefficients (typically less than 21 ppm/degree Kelvin), leading to more stable operation. Compared to ceramic filters they offer much smaller component size.

The BAW filters developed by Philips use a solidly mounted aluminum nitride BAW element to provide physical robustness and excellent power handling, mounted on a Bragg reflector to isolate acoustic vibrations from the silicon substrate. Designed using 2-dimensional modeling techniques developed specially by Philips, these BAW elements exhibit a Q-factor in excess of 1000 and a typical insertion loss of 0.5 dB per filter section (less than 2 dB total for a typical 3-section filter). A protective cover and flip-chip solder balls are added to the device during wafer processing, with devices needing no further packaging operations after the wafer is sliced up into individual components.

Philips Research has successfully demonstrated BAW resonators and filters based on this technology operating at frequencies up to 16 GHz, but believes that their main application will lie in the 800 MHz to 10 GHz ranges, serving the needs of wireless transceivers for systems such as Bluetooth, GSM/GPRS/EDGE, UMTS and IEEE 802.11a. The BAW filters can both be used as separate components and could be a part of integrated RF System-in-Package solutions for wireless applications.

Source: Philips

Explore further: Circuits on demand: Engineer prints electrical components on paper

add to favorites email to friend print save as pdf

Related Stories

Rosetta's comet: In the shadow of the coma

31 minutes ago

This NAVCAM mosaic comprises four individual images taken on 20 November from a distance of 30.8 km from the centre of Comet 67P/C-G. The image resolution is 2.6 m/pixel, so each original 1024 x 1024 pixel ...

Nanomaterials to preserve ancient works of art

1 hour ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Shedding light on solar power

1 hour ago

Everyone wants to save energy, but not everyone knows where to start. Grid Resources, a startup based out of the Centre for Urban Energy's iCUE incubator, is developing a new website that seeks to help homeowners ...

Recommended for you

Hackers force message on websites via US firm

1 hour ago

A U.S. firm that helps connect more than 700 companies with customers through social media says a Syrian group hacked the company's web address to upload a message to other websites.

Shedding light on solar power

7 hours ago

Everyone wants to save energy, but not everyone knows where to start. Grid Resources, a startup based out of the Centre for Urban Energy's iCUE incubator, is developing a new website that seeks to help homeowners ...

Energy transition project moves into its second phase

7 hours ago

Siemens is studying new concepts for optimizing the cost-effectiveness and technical performance of energy systems with distributed and fluctuating electricity production. The associated IRENE research project ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.